Water stable mixed-matrix membranes(MMMs) were developed to help control the global warming by capturing and sequestrating carbon dioxide(CO_2) from post-combustion flue gas originated from burning of fossil fuels.MMM...Water stable mixed-matrix membranes(MMMs) were developed to help control the global warming by capturing and sequestrating carbon dioxide(CO_2) from post-combustion flue gas originated from burning of fossil fuels.MMMs of different compositions were prepared by doping glassy polymer Ultrason? S 6010(US) with nanocrystals of zeolitic imidazolate frameworks(ZIF-300) in varying degrees. Solution-casting technique was used to fabricate various MMMs to optimize their CO_2 capturing performance from both dry and wet gases. The prepared composite membranes indicated enhanced filler-polymer interfacial adhesion, consistent distribution of nanofiller, and thermally established matrix configuration. CO_2 permeability of the membranes was enhanced as demonstrated by gas sorption and permeation experiments performed under both dry and wet conditions. As compared to neat Ultrason? membrane, CO_2 permeability of the composite membrane doped with 40 wt% ZIF-300 nanocrystals was increased by four times without disturbing CO_2/N_2 ideal selectivity. In contrast to majority of previously reported membranes, key features of the fabricated MMMs include their structural stability under humid conditions coupled with better and unaffected gas separation performance.展开更多
In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was th...In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N2adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO2/CH4transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups’ interactions. The gas permeation results showed that the CO2permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO2/CH4selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.展开更多
An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VC...An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VCG) is suitable for multi-mode multi-standard( MMMS) applications. An equivalent local oscillator( LO) frequency-tunable high-Q band-pass filter( BPF) at low noise amplifier( LNA) output is used to reject the out-of-band interference signals. Base-band( BB) capacitor of the mixer is variable to obtain 15 kinds of intermediate frequency( IF) bandwidth( BW). The proposed passive mixer with LNA is implemented in TSMC 0. 18μm RF CMOS process and operates from 0. 5 to 2. 5 GHz with measured maximum out-of-band rejection larger than 40 d B. The measured VCG of the front-end can be changed from 5 to 17 d B; the maximum input intercept point( IIP3) is0 d Bm and the minimum noise figure( NF) is 3. 7 d B. The chip occupies an area of 0. 44 mm^2 including pads.展开更多
This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by t...This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by the noise canceling technique while the bandwidth is enhanced by gate inductive peaking technique. Measurement results show that, while the input frequency ranges from 100 MHz to 2.9 GHz, the proposed reconfigurable RF front-end achieves a controllable voltage conversion gain(VCG) from 18 dB to 39 dB. The measured maximum input third intercept point(IIP3) is-4.9 dBm and the minimum noise figure(NF) is 4.6 dB. The consumed current ranges from 16 mA to 26.5 mA from a 1.8 V supply voltage. The chip occupies an area of 1.17 mm^2 including pads.展开更多
基金KACST-Technology Innovation Center on Carbon Capture and Sequestration(CCS),King Fahd University of Petroleum and Minerals,Dhahran,Kingdom of Saudi Arabia(KSA)for providing support for this work
文摘Water stable mixed-matrix membranes(MMMs) were developed to help control the global warming by capturing and sequestrating carbon dioxide(CO_2) from post-combustion flue gas originated from burning of fossil fuels.MMMs of different compositions were prepared by doping glassy polymer Ultrason? S 6010(US) with nanocrystals of zeolitic imidazolate frameworks(ZIF-300) in varying degrees. Solution-casting technique was used to fabricate various MMMs to optimize their CO_2 capturing performance from both dry and wet gases. The prepared composite membranes indicated enhanced filler-polymer interfacial adhesion, consistent distribution of nanofiller, and thermally established matrix configuration. CO_2 permeability of the membranes was enhanced as demonstrated by gas sorption and permeation experiments performed under both dry and wet conditions. As compared to neat Ultrason? membrane, CO_2 permeability of the composite membrane doped with 40 wt% ZIF-300 nanocrystals was increased by four times without disturbing CO_2/N_2 ideal selectivity. In contrast to majority of previously reported membranes, key features of the fabricated MMMs include their structural stability under humid conditions coupled with better and unaffected gas separation performance.
文摘In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N2adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO2/CH4transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups’ interactions. The gas permeation results showed that the CO2permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO2/CH4selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.
基金Supported by the National Basic Research Program of China(No.2010CB327404)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VCG) is suitable for multi-mode multi-standard( MMMS) applications. An equivalent local oscillator( LO) frequency-tunable high-Q band-pass filter( BPF) at low noise amplifier( LNA) output is used to reject the out-of-band interference signals. Base-band( BB) capacitor of the mixer is variable to obtain 15 kinds of intermediate frequency( IF) bandwidth( BW). The proposed passive mixer with LNA is implemented in TSMC 0. 18μm RF CMOS process and operates from 0. 5 to 2. 5 GHz with measured maximum out-of-band rejection larger than 40 d B. The measured VCG of the front-end can be changed from 5 to 17 d B; the maximum input intercept point( IIP3) is0 d Bm and the minimum noise figure( NF) is 3. 7 d B. The chip occupies an area of 0. 44 mm^2 including pads.
基金Supported by the National Nature Science Foundation of China(No.61674037)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the National Power Grid Corp Science and Technology Project(No.SGTYHT/16-JS-198)the State Grid Nanjing Power Supply Company Project(No.1701052)
文摘This paper presents a reconfigurable RF front-end for multi-mode multi-standard(MMMS) applications. The designed RF front-end is fabricated in 0.18 μm RF CMOS technology. The low noise characteristic is achieved by the noise canceling technique while the bandwidth is enhanced by gate inductive peaking technique. Measurement results show that, while the input frequency ranges from 100 MHz to 2.9 GHz, the proposed reconfigurable RF front-end achieves a controllable voltage conversion gain(VCG) from 18 dB to 39 dB. The measured maximum input third intercept point(IIP3) is-4.9 dBm and the minimum noise figure(NF) is 4.6 dB. The consumed current ranges from 16 mA to 26.5 mA from a 1.8 V supply voltage. The chip occupies an area of 1.17 mm^2 including pads.