Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore di...Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.展开更多
Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such prope...Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy.展开更多
A rhizobox system was used to determine the distribution of micronutrients (Fe, Mn, Cu and Zn) acrossthe rhmosphere of wheat (Triticum aestivum). The available contents of Fe and Mn in the rhizosphere wereraised by ad...A rhizobox system was used to determine the distribution of micronutrients (Fe, Mn, Cu and Zn) acrossthe rhmosphere of wheat (Triticum aestivum). The available contents of Fe and Mn in the rhizosphere wereraised by addition of manure or chemical fertilizer combined with manure, but those of Cu and Zn werehardly affected, which might be an important reason why manure addition could improve the Fe and Mnnutrition status of plants. Several possible mechanisms for the increase of the availabilities of Fe and Mn inthe rhizosphere due to manuring are discussed as well.展开更多
基金Project(51771101)supported by the National Natural Science Foundation of China。
文摘Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.
基金The authors are grateful to FAPESP-São Paulo Research Foundation,Brazil(2014/50502-5 and 2017/16058-9)Capes-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Brazil(Funding code 001)and CNPq-National Council for Scientific and Technological Development(406239/2018-5)for their financial supportThe authors would like to thank the Brazilian Nanotechnology National Laboratory–LNNano for allowing us to use its facilities.
文摘Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy.
文摘A rhizobox system was used to determine the distribution of micronutrients (Fe, Mn, Cu and Zn) acrossthe rhmosphere of wheat (Triticum aestivum). The available contents of Fe and Mn in the rhizosphere wereraised by addition of manure or chemical fertilizer combined with manure, but those of Cu and Zn werehardly affected, which might be an important reason why manure addition could improve the Fe and Mnnutrition status of plants. Several possible mechanisms for the increase of the availabilities of Fe and Mn inthe rhizosphere due to manuring are discussed as well.