The γ-ray radiation will speed up the discharge of the storedcharge in nonvolatile MNOS structure. The radiation absorptionmechanism to enhance the discharge is discussed. A direct radiationemission model from the in...The γ-ray radiation will speed up the discharge of the storedcharge in nonvolatile MNOS structure. The radiation absorptionmechanism to enhance the discharge is discussed. A direct radiationemission model from the interface traps distributing both in energylevel and in space is given. The theoretical results based on thismodel are in good agreement with experimental measurements.展开更多
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern...Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.展开更多
采用水热法成功合成了一种新型氮掺杂碳修饰MnO2纳米带(MnO2@NC)。将该材料作为锂离子电池负极时,在2 A g-1的大电流密度下循环1000次后,其可逆比容量可达310.4 mAh g-1,并展现出卓越的倍率并能。与未改性MnO2相比,MnO2@NC表现出更好的...采用水热法成功合成了一种新型氮掺杂碳修饰MnO2纳米带(MnO2@NC)。将该材料作为锂离子电池负极时,在2 A g-1的大电流密度下循环1000次后,其可逆比容量可达310.4 mAh g-1,并展现出卓越的倍率并能。与未改性MnO2相比,MnO2@NC表现出更好的倍率性能、更高的比容量和容量保持率。电化学测试分析表明,MnO2@NC电化学性能提高的原因在于电荷转移电阻的降低、缩短的Li+扩散距离以及更为优异的电极动力学。?展开更多
文摘The γ-ray radiation will speed up the discharge of the storedcharge in nonvolatile MNOS structure. The radiation absorptionmechanism to enhance the discharge is discussed. A direct radiationemission model from the interface traps distributing both in energylevel and in space is given. The theoretical results based on thismodel are in good agreement with experimental measurements.
基金Joint Funds of the National Natural Science Foundation of China (U22A20140)University of Jinan Disciplinary Cross-Convergence Construction Project 2023 (XKJC-202309, XKJC-202307)+4 种基金Jinan City-School Integration Development Strategy Project (JNSX2023015)Independent Cultivation Program of Innovation Team of Ji’nan City (202333042)Youth Innovation Group Plan of Shandong Province (2022KJ095)Shenzhen Stable Support Plan Program for Higher Education Institutions Research Program (20220816131408001)Shenzhen Science and Technology Program (JCYJ20230807091802006)。
文摘Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.
文摘采用水热法成功合成了一种新型氮掺杂碳修饰MnO2纳米带(MnO2@NC)。将该材料作为锂离子电池负极时,在2 A g-1的大电流密度下循环1000次后,其可逆比容量可达310.4 mAh g-1,并展现出卓越的倍率并能。与未改性MnO2相比,MnO2@NC表现出更好的倍率性能、更高的比容量和容量保持率。电化学测试分析表明,MnO2@NC电化学性能提高的原因在于电荷转移电阻的降低、缩短的Li+扩散距离以及更为优异的电极动力学。?