A homemade 7×2 inch MOCVD system is presented.With this system,high quality GaN epitaxial layers,InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown. The non-unifor...A homemade 7×2 inch MOCVD system is presented.With this system,high quality GaN epitaxial layers,InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown. The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%.Using the LED structural epitaxial layers, blue LED chips with area of 350×350μm2 were fabricated.Under 20 mA injection current,the optical output power of the blue LED is 8.62 mW.展开更多
In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-...In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors.展开更多
对实验室用 MOCVD方法生长的未掺杂 Ga N单晶膜的发光性能进行了研究。结果表明 :在室温时未掺杂 Ga N单晶出现的能量为 2 .9e V左右蓝带发光与补偿度有较强的依赖关系。高补偿 Ga N的蓝带发射强 ,低补偿 Ga N的蓝带发射弱。对蓝带发光...对实验室用 MOCVD方法生长的未掺杂 Ga N单晶膜的发光性能进行了研究。结果表明 :在室温时未掺杂 Ga N单晶出现的能量为 2 .9e V左右蓝带发光与补偿度有较强的依赖关系。高补偿 Ga N的蓝带发射强 ,低补偿 Ga N的蓝带发射弱。对蓝带发光机理进行了探讨 ,认为蓝带为导带电子跃迁至受主能级的发光 ( e A发光 )。观察到降低 Ga N补偿度能提高 Ga N带边发射强度。展开更多
基金Project supported by the National High Technology Research and Development Program of China(No.2006AA03A141)the Knowledge Innovation Engineering of the Chinese Academy of Sciences(No.YYYJ-0701-02)+2 种基金the National Natural Science Foundation of China (Nos.60890193,60906006)the State Key Development Program for Basic Research of China(Nos.2006CB604905,2010CB327503)the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.ISCAS2008T01,ISCAS2009L01,ISCAS2009L02)
文摘A homemade 7×2 inch MOCVD system is presented.With this system,high quality GaN epitaxial layers,InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown. The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%.Using the LED structural epitaxial layers, blue LED chips with area of 350×350μm2 were fabricated.Under 20 mA injection current,the optical output power of the blue LED is 8.62 mW.
基金the National Natural Science Foundation of China(62304252)the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)and IMECAS-HKUST-Joint Laboratory of Microelectronics。
基金This work was supported by the National Key Research and Development Program of China(Grant No.2020YFB2206103)。
文摘In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors.
文摘对实验室用 MOCVD方法生长的未掺杂 Ga N单晶膜的发光性能进行了研究。结果表明 :在室温时未掺杂 Ga N单晶出现的能量为 2 .9e V左右蓝带发光与补偿度有较强的依赖关系。高补偿 Ga N的蓝带发射强 ,低补偿 Ga N的蓝带发射弱。对蓝带发光机理进行了探讨 ,认为蓝带为导带电子跃迁至受主能级的发光 ( e A发光 )。观察到降低 Ga N补偿度能提高 Ga N带边发射强度。