期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型 被引量:1
1
作者 张军 吴朋莉 +2 位作者 石陆魁 史进 潘斌 《计算机应用》 CSCD 北大核心 2023年第1期321-328,共8页
针对地面气象站点分布稀疏影响站点间关系以及站点间的关系强度推理难的问题,提出一种基于联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型(GDM)。GDM包括时空注意力(TSA)、双向图神经长短期记忆(DG-LSTM)网络编码和边-点... 针对地面气象站点分布稀疏影响站点间关系以及站点间的关系强度推理难的问题,提出一种基于联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型(GDM)。GDM包括时空注意力(TSA)、双向图神经长短期记忆(DG-LSTM)网络编码和边-点转换双向门控循环网络解码(EN-GRU)模块。首先使用TSA模块提取MOD11A1图像特征并形成多个虚拟气象站点的温度时间序列,缓解地面气象站点分布稀疏对站点间关系的影响;然后用DG-LSTM编码器通过融合两组温度时间序列来计算地面气象站点间和虚拟气象站点间的关系强度;最后用ENGRU解码器通过结合站点间的关系强度对地面气象站点的温度时间序列关系进行建模。实验结果表明,相较于二维卷积神经网络(2D-CNN)、长短期记忆全连接网络(LSTM-FC)、长短期记忆神经网络扩展网络(LSTME)和长短记忆与自适应提升集成网络(LSTM-AdaBoost),GDM在10个地面气象站点24 h内温度预测的平均绝对误差(MAE)分别减小0.383℃、0.184℃、0.178℃和0.164℃,能提高未来24 h多个气象站点温度的预测精度。 展开更多
关键词 温度预测 注意力机制 深度学习 长短期记忆网络 门控循环单元 图神经网络 mod11a1 地面气象站点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部