As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrom...As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrometer (MODIS) NDVI dataset that provides high-quality continuous time series data is representing a potentially significant source of land cover information especially for detection natural forest distribution. This study intends to assess the advantage of MODIS 250 m Normalized Difference Vegetation Index (NDVI) multi-temporal imagery for detection of densely vegetation cover distribution in Java and then for identification of remaining natural forest in Java from densely vegetation cover distribution. Result of this study successfully demonstrated the contribution of MODIS NDVI 250 m for detection the natural forest distribution in Java Island. Therefore, the approach described herein provided classification accuracy comparable to those of maps derived from higher resolution data and will be a viable alternative for regional or national classifications.展开更多
MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和...MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和EVI时间谱数据进行了重构,从而进行了河西走廊绿洲中东部样区一系列耕地信息的提取实验,包括耕地、休耕地识别以及耕地复种指数、作物种类提取。在此基础上,对MODIS的NDVI与EVI数据的应用进行了对比分析。结果显示:(1)利用傅立叶谐波变换得到的EVI和NDVI时间谱曲线的谐波余项及谐波振幅对耕地进行识别,从识别精度来看,EVI要优于NDVI,识别精度分别为97.17%和95.99%,Kappa系数分别达到0.7938和0.6518;(2)通过计算时间序列曲线的波峰数能够提取耕地的复种指数,并且在EVI和NDVI曲线波峰阈值分别设为0.20和0.25时,休耕地能较为准确地被识别出来;(3)通过提取作物生长期内曲线的VI最大增长速率时间点以及峰值时间点等信息,作物种类能被初步识别,并且EVI较NDVI具有更强的识别能力。展开更多
为了了解西北地区MODIS-NDVI和MODIS-EVI两种植被指数的特点,本文利用美国NASA LP DAAC(Land Process Distributed Active Archive Center)2004年1~12月的250m分辨率16天植被指数合成的MOD13 Q1数据集,对西北地区不同类型植被NDVI...为了了解西北地区MODIS-NDVI和MODIS-EVI两种植被指数的特点,本文利用美国NASA LP DAAC(Land Process Distributed Active Archive Center)2004年1~12月的250m分辨率16天植被指数合成的MOD13 Q1数据集,对西北地区不同类型植被NDVI和EVI的特征进行分析,并对西北地区MODIS-NDVI饱和问题进行了初步研究。结果表明:NDVI和EVI对干旱-半干旱气候区植被覆盖度不高的植被类型描述能力相似,月际变化趋势一致。西北地区各种植被类型NDVI比EVI高,NDVI与EVI的差异总体上呈现从半荒漠、草原、农区到林区,随NDVI值的增加而增大的规律。对植被度覆盖度高的阔叶林和针叶林,在植被生长旺盛期,NDVI总在0.8附近波动,NDVI随植被的生长增加的很小,一直维持在一个高且平的范同内,不再能看出植被生长变化的现象,即饱和现象严重;而EVI表现良好,随着植被的生长而增加,能明显地反映出植被生长的季节变化。西北高寒草甸和陕西关中农业区NDVI也出现有不同程度的饱和,饱和时间因植被的不同从1~2月不等。0.8可作为NDVI饱和的阈值。NDVI饱和问题对卫星监测植被的研究和应用会产生误差,EVI能较好地解决NDVI的饱和问题。展开更多
文摘As landmass of the world is covered by vegetation, taking into account phenology when performing land cover classification may yield more accurate maps. The availability of no-cost Moderate Resolution Imaging Spectrometer (MODIS) NDVI dataset that provides high-quality continuous time series data is representing a potentially significant source of land cover information especially for detection natural forest distribution. This study intends to assess the advantage of MODIS 250 m Normalized Difference Vegetation Index (NDVI) multi-temporal imagery for detection of densely vegetation cover distribution in Java and then for identification of remaining natural forest in Java from densely vegetation cover distribution. Result of this study successfully demonstrated the contribution of MODIS NDVI 250 m for detection the natural forest distribution in Java Island. Therefore, the approach described herein provided classification accuracy comparable to those of maps derived from higher resolution data and will be a viable alternative for regional or national classifications.
文摘MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和EVI时间谱数据进行了重构,从而进行了河西走廊绿洲中东部样区一系列耕地信息的提取实验,包括耕地、休耕地识别以及耕地复种指数、作物种类提取。在此基础上,对MODIS的NDVI与EVI数据的应用进行了对比分析。结果显示:(1)利用傅立叶谐波变换得到的EVI和NDVI时间谱曲线的谐波余项及谐波振幅对耕地进行识别,从识别精度来看,EVI要优于NDVI,识别精度分别为97.17%和95.99%,Kappa系数分别达到0.7938和0.6518;(2)通过计算时间序列曲线的波峰数能够提取耕地的复种指数,并且在EVI和NDVI曲线波峰阈值分别设为0.20和0.25时,休耕地能较为准确地被识别出来;(3)通过提取作物生长期内曲线的VI最大增长速率时间点以及峰值时间点等信息,作物种类能被初步识别,并且EVI较NDVI具有更强的识别能力。
文摘为了了解西北地区MODIS-NDVI和MODIS-EVI两种植被指数的特点,本文利用美国NASA LP DAAC(Land Process Distributed Active Archive Center)2004年1~12月的250m分辨率16天植被指数合成的MOD13 Q1数据集,对西北地区不同类型植被NDVI和EVI的特征进行分析,并对西北地区MODIS-NDVI饱和问题进行了初步研究。结果表明:NDVI和EVI对干旱-半干旱气候区植被覆盖度不高的植被类型描述能力相似,月际变化趋势一致。西北地区各种植被类型NDVI比EVI高,NDVI与EVI的差异总体上呈现从半荒漠、草原、农区到林区,随NDVI值的增加而增大的规律。对植被度覆盖度高的阔叶林和针叶林,在植被生长旺盛期,NDVI总在0.8附近波动,NDVI随植被的生长增加的很小,一直维持在一个高且平的范同内,不再能看出植被生长变化的现象,即饱和现象严重;而EVI表现良好,随着植被的生长而增加,能明显地反映出植被生长的季节变化。西北高寒草甸和陕西关中农业区NDVI也出现有不同程度的饱和,饱和时间因植被的不同从1~2月不等。0.8可作为NDVI饱和的阈值。NDVI饱和问题对卫星监测植被的研究和应用会产生误差,EVI能较好地解决NDVI的饱和问题。