Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were is...Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were isolated, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analyzed by high-performance anion-exchange chromatography and by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Oligosaccharide profiles of the non-commelinid monocotyledons were similar to those of most eudicotyledons, indicating the xyloglucans were fucogalactoxyloglucans, with a XXXG a core motif and the fucosylated units XXFG and XLFG. An exception was Lemna minor (Araceae), which yielded no fucosylated oligosaccharides and had both XXXG and XXGn core motifs. Except for the Arecales (palms) and the Dasypogonaceae, which had fucogalactoxyloglucans, the xyloglucans of the commelinid monocotyledons were structurally different. The Zingiberales and Commelinales had xyloglucans with both XXGn and XXXG core motifs; small proportions of XXFG units, but no XLFG units, were present. In the Poales, the Poaceae had xyloglucans with a XXGn core motif and no fucosylated units. In the other Poales families, some had both XXXG and XXGn core motifs, others had only XXXG; XXFG units were present, but XLFG units were not.展开更多
Xyloglucans in the non-lignified primary cell walls of different species of monocotyledons have diverse struc- tures, with widely varying proportions of oligosaccharide units that contain fucosylated side chains (F s...Xyloglucans in the non-lignified primary cell walls of different species of monocotyledons have diverse struc- tures, with widely varying proportions of oligosaccharide units that contain fucosylated side chains (F side chains). To determine whether fucosylated xyloglucans occur in all non-lignified walls in a range of monocotyledon species, we used immunofluorescence microscopy with the monoclonal antibody CCRC-M1. The epitope of this antibody, α-L-FUCp-(1 →2)- β-D-Galp, occurs in F side chains. In most non-commelinid monocotyledons, the epitope was found in all non-lignified walls. A similar distribution was found in the palm Phoenix canariensis, which is a member of the basal commelinid order Arecales. However, in the other commelinid orders Zingiberales, Commelinales, and Poales, the occurrence of the epitope was restricted, sometimes occurring in only the phloem walls, but often also in walls of other cell types including stomatal guard and subsidiary cells and raphide idioblasts. No epitope was found in the walls of the commelinids Tradescantia virginiana (Commelinaceae, Commelinales) and Zea mays (Poaceae, Poales), but it occurred in the phloem walls of two other Poaceae species, Lolium multiflorum and L. perenne. The distribution of the epitope is discussed in relation to xyloglucan structures in the different taxa. However, the functional significance of the restricted distributions is unknown.展开更多
This is the first reports of a few fossil monocotyledons, including \%Liaoxia chenii\% gen. et sp. nov. (belonging to Cyperaceae), \%Eragrosites changii\% gen. et sp. nov. (Gramineae) and a monocotyledonous leaf_shoot...This is the first reports of a few fossil monocotyledons, including \%Liaoxia chenii\% gen. et sp. nov. (belonging to Cyperaceae), \%Eragrosites changii\% gen. et sp. nov. (Gramineae) and a monocotyledonous leaf_shoot, obtained from the Late Jurassic Yixian Formation of western Liaoning Province, NE China. These fossils are the oldest known angiosperms in the world. It may be inferred that the earliest angiosperms probably appeared even earlier than the Late Jurassic.展开更多
Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0...Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0.5 mumol/L) and K5 which was the K3 medium supplemented with cupric sulfa (0.5 mumol/L) under dim-light condition (20-30 mumol.m(-2).s-1, 16 h light) at 24 degreesC. Embryogenic calli were transformed with plasmids pDM805 Carring bar and gus genes, Which was mediated by an Agrobacterium strain AGL1, four transgenic lines were obtained. The important factors that affect the transformation efficiency and obtain desirable number of transgenic plants included: (1) the quality of embryogenic calli; (2) light condition and time of co-cultivation; (3) concentration of antibiotics used for suppressing the overgrowth of Agrobacterium in the course of transformed plant regeneration; (4) selection pressure, etc. The micro nutrient of cupric had significant influence on the quality of embryogenic calli. This presentation is the first successful protocol of Kentucky bluegrass transformation mediated by Agrobacterium.展开更多
Leaf fragments of Herbifolia antiqua A.Frolov et Enushchenko gen.et sp.nov.from the Middle Jurassic(Aalenian)of the Irkutsk Coal Basin(Eastern Siberia,Russia)are reported.The following features are characteristic of H...Leaf fragments of Herbifolia antiqua A.Frolov et Enushchenko gen.et sp.nov.from the Middle Jurassic(Aalenian)of the Irkutsk Coal Basin(Eastern Siberia,Russia)are reported.The following features are characteristic of H.antiqua gen.et sp.nov.:the presence of leaf sheaths,linear smooth-edged leaves with parallel venation,anastomoses between the veins,anomocytic stomata,rhomb-shaped ordinary epidermal cells.Such a combination of characters is widespread in modern monocotyledonous plants and is absent in fossil and modern cryptogam and gymnosperms.Due to the lack of evidence of an enclosed ovule in H.antiqua gen.et sp.nov.,we attribute it to a typological angiosperm,based on its unique leaf structure characteristic of monocotyledons.The leaf epidermal structure of Herbifolia gen.nov.is most similar to those of modern Asparagales and Liliales.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
Ethylene as a gas phytohormone plays significant roles in the whole life cycle of plants, ranging from growth and development to stress responses. A linear ethylene signaling pathway has been established in the dicoty...Ethylene as a gas phytohormone plays significant roles in the whole life cycle of plants, ranging from growth and development to stress responses. A linear ethylene signaling pathway has been established in the dicotyledonous model plant Arabidopsis. However, the ethylene signaling mechanism in monocotyledonous plants such as rice is largely unclear. In this review, We compare the ethylene response phenotypes of dark-grown seedlings of Arabidopsis, rice, and other monocotyledonous plants (maize, wheat, sorghum, and Brachypodium distachyon) and pinpoint that rice has a distinct phenotype of root inhibition but coleoptile promotion in etiolated seedlings upon ethylene treatment. We further summarize the homologous genes of Arabidopsis ethylene signaling components in these monocotyledonous plants and discuss recent progress. Although conserved in most aspects, ethylene signaling in rice has evolved new features compared with that in Arabidopsis. These analyses provide novel insights into the understanding of ethylene signaling in the dicotyledonous Arabidopsis and monocotyledonous plants, particularly rice. Further characterization of rice ethylene-responsive mutants and their corresponding genes will help us better understand the whole picture of ethylene signaling mechanisms in plants.展开更多
A cDNA clone, pS4, has been isolated from a cDNA library prepared from rice anthers of about 1.0 mm in length. DNA sequence analysis and database search show that the cDNA encodes a protein which is highly homologous ...A cDNA clone, pS4, has been isolated from a cDNA library prepared from rice anthers of about 1.0 mm in length. DNA sequence analysis and database search show that the cDNA encodes a protein which is highly homologous to eukaryotic 80S ribosomal protein subunit 4 (S4). Northern hybridization indicates that this gene expresses in all tissues analyzed although the expression level varies and it cannot be induced by mechanical wounding in leaves. Southern blot analysis demonstrates that this rice S4 gene is from a multigene展开更多
文摘Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were isolated, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analyzed by high-performance anion-exchange chromatography and by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Oligosaccharide profiles of the non-commelinid monocotyledons were similar to those of most eudicotyledons, indicating the xyloglucans were fucogalactoxyloglucans, with a XXXG a core motif and the fucosylated units XXFG and XLFG. An exception was Lemna minor (Araceae), which yielded no fucosylated oligosaccharides and had both XXXG and XXGn core motifs. Except for the Arecales (palms) and the Dasypogonaceae, which had fucogalactoxyloglucans, the xyloglucans of the commelinid monocotyledons were structurally different. The Zingiberales and Commelinales had xyloglucans with both XXGn and XXXG core motifs; small proportions of XXFG units, but no XLFG units, were present. In the Poales, the Poaceae had xyloglucans with a XXGn core motif and no fucosylated units. In the other Poales families, some had both XXXG and XXGn core motifs, others had only XXXG; XXFG units were present, but XLFG units were not.
文摘Xyloglucans in the non-lignified primary cell walls of different species of monocotyledons have diverse struc- tures, with widely varying proportions of oligosaccharide units that contain fucosylated side chains (F side chains). To determine whether fucosylated xyloglucans occur in all non-lignified walls in a range of monocotyledon species, we used immunofluorescence microscopy with the monoclonal antibody CCRC-M1. The epitope of this antibody, α-L-FUCp-(1 →2)- β-D-Galp, occurs in F side chains. In most non-commelinid monocotyledons, the epitope was found in all non-lignified walls. A similar distribution was found in the palm Phoenix canariensis, which is a member of the basal commelinid order Arecales. However, in the other commelinid orders Zingiberales, Commelinales, and Poales, the occurrence of the epitope was restricted, sometimes occurring in only the phloem walls, but often also in walls of other cell types including stomatal guard and subsidiary cells and raphide idioblasts. No epitope was found in the walls of the commelinids Tradescantia virginiana (Commelinaceae, Commelinales) and Zea mays (Poaceae, Poales), but it occurred in the phloem walls of two other Poaceae species, Lolium multiflorum and L. perenne. The distribution of the epitope is discussed in relation to xyloglucan structures in the different taxa. However, the functional significance of the restricted distributions is unknown.
文摘This is the first reports of a few fossil monocotyledons, including \%Liaoxia chenii\% gen. et sp. nov. (belonging to Cyperaceae), \%Eragrosites changii\% gen. et sp. nov. (Gramineae) and a monocotyledonous leaf_shoot, obtained from the Late Jurassic Yixian Formation of western Liaoning Province, NE China. These fossils are the oldest known angiosperms in the world. It may be inferred that the earliest angiosperms probably appeared even earlier than the Late Jurassic.
文摘Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0.5 mumol/L) and K5 which was the K3 medium supplemented with cupric sulfa (0.5 mumol/L) under dim-light condition (20-30 mumol.m(-2).s-1, 16 h light) at 24 degreesC. Embryogenic calli were transformed with plasmids pDM805 Carring bar and gus genes, Which was mediated by an Agrobacterium strain AGL1, four transgenic lines were obtained. The important factors that affect the transformation efficiency and obtain desirable number of transgenic plants included: (1) the quality of embryogenic calli; (2) light condition and time of co-cultivation; (3) concentration of antibiotics used for suppressing the overgrowth of Agrobacterium in the course of transformed plant regeneration; (4) selection pressure, etc. The micro nutrient of cupric had significant influence on the quality of embryogenic calli. This presentation is the first successful protocol of Kentucky bluegrass transformation mediated by Agrobacterium.
基金carried out in the framework of the state task topic of the Institute of the Earth’s Crust,Siberian Branch of the Russian Academy of Sciences (Project No. 0346-2018-0004)involved the Centre of Geodynamics and Geochronology equipment at the Institute of the Earth’s Crust,Siberian Branch of the Russian Academy of Sciences (Grant No. 075-15-2021-682)
文摘Leaf fragments of Herbifolia antiqua A.Frolov et Enushchenko gen.et sp.nov.from the Middle Jurassic(Aalenian)of the Irkutsk Coal Basin(Eastern Siberia,Russia)are reported.The following features are characteristic of H.antiqua gen.et sp.nov.:the presence of leaf sheaths,linear smooth-edged leaves with parallel venation,anastomoses between the veins,anomocytic stomata,rhomb-shaped ordinary epidermal cells.Such a combination of characters is widespread in modern monocotyledonous plants and is absent in fossil and modern cryptogam and gymnosperms.Due to the lack of evidence of an enclosed ovule in H.antiqua gen.et sp.nov.,we attribute it to a typological angiosperm,based on its unique leaf structure characteristic of monocotyledons.The leaf epidermal structure of Herbifolia gen.nov.is most similar to those of modern Asparagales and Liliales.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.
基金This work is supported by the National Natural Science Foundation of China (91317306), State Key Basic Research Project (2015CB755702) and the State Key Lab of Plant Genomics.ACKNOWLEDGMENTS No conflict of interest declared.
文摘Ethylene as a gas phytohormone plays significant roles in the whole life cycle of plants, ranging from growth and development to stress responses. A linear ethylene signaling pathway has been established in the dicotyledonous model plant Arabidopsis. However, the ethylene signaling mechanism in monocotyledonous plants such as rice is largely unclear. In this review, We compare the ethylene response phenotypes of dark-grown seedlings of Arabidopsis, rice, and other monocotyledonous plants (maize, wheat, sorghum, and Brachypodium distachyon) and pinpoint that rice has a distinct phenotype of root inhibition but coleoptile promotion in etiolated seedlings upon ethylene treatment. We further summarize the homologous genes of Arabidopsis ethylene signaling components in these monocotyledonous plants and discuss recent progress. Although conserved in most aspects, ethylene signaling in rice has evolved new features compared with that in Arabidopsis. These analyses provide novel insights into the understanding of ethylene signaling in the dicotyledonous Arabidopsis and monocotyledonous plants, particularly rice. Further characterization of rice ethylene-responsive mutants and their corresponding genes will help us better understand the whole picture of ethylene signaling mechanisms in plants.
文摘A cDNA clone, pS4, has been isolated from a cDNA library prepared from rice anthers of about 1.0 mm in length. DNA sequence analysis and database search show that the cDNA encodes a protein which is highly homologous to eukaryotic 80S ribosomal protein subunit 4 (S4). Northern hybridization indicates that this gene expresses in all tissues analyzed although the expression level varies and it cannot be induced by mechanical wounding in leaves. Southern blot analysis demonstrates that this rice S4 gene is from a multigene