期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8曲轴表面缺陷检测算法
1
作者 孙渊 曹俊杰 +1 位作者 唐矫燕 李婷 《组合机床与自动化加工技术》 北大核心 2024年第10期77-81,共5页
针对曲轴表面小目标缺陷检测难度大、缺陷背景复杂和检测速度慢等问题,提出一种改进曲轴表面缺陷检测的算法RB-YOLOv8。首先,用RepViT模块取代了传统的C2f模块,有助于减少网络的计算负担并加快其运行速度;接着,通过优化双向特征融合模块... 针对曲轴表面小目标缺陷检测难度大、缺陷背景复杂和检测速度慢等问题,提出一种改进曲轴表面缺陷检测的算法RB-YOLOv8。首先,用RepViT模块取代了传统的C2f模块,有助于减少网络的计算负担并加快其运行速度;接着,通过优化双向特征融合模块BiFPN及增加小目标检测层,改善小目标缺陷识别的能力;然后,利用BiFormer注意力机制强化模型的抗干扰能力和解决缺陷背景复杂的难题,提高检测准确率;最后,使用MPDIoU损失函数调整,从而进一步提升检测的精准度。实验结果表明,所提出的算法的检测精度可以达到98.4%,模型大小缩减为2.797 MB,同时使每秒帧数(FPS)达到了169 f/s,成功地实现了对曲轴表面的缺陷检测。 展开更多
关键词 曲轴表面缺陷检测 RepViT网络 BiFPN模块 BiFormer注意力机制 mpdiou损失
下载PDF
改进YOLOv8表格行列单元格结构检测
2
作者 任强 玛依热·依布拉音 艾斯卡尔·艾木都拉 《中国科技论文》 CAS 2024年第5期607-614,共8页
当前数字办公文档中涵盖了大量的表格数据,因此智能化表格结构识别需求日益剧增,但表格结构紧密相连且表格结构类型复杂多变,从而导致表格结构检测难度极大。针对该问题,在YOLOv8的基础上,以ICDAR19-cTDaR表格单元格结构和TabStructDB... 当前数字办公文档中涵盖了大量的表格数据,因此智能化表格结构识别需求日益剧增,但表格结构紧密相连且表格结构类型复杂多变,从而导致表格结构检测难度极大。针对该问题,在YOLOv8的基础上,以ICDAR19-cTDaR表格单元格结构和TabStructDB表格行列结构为实验对象,提出了一种新型表格行列单元格结构检测方法。首先,为了增强表格单元格及行列特征提取能力,引入了可变形卷积网络(deformable convolution network,DCN)。其次,引入了空间通道重构卷积(spatial and channel reconstruction convolution,SCConv),该卷积不仅特征提取能力强而且能够减少冗余特征从而降低复杂性和计算成本。根据以上引入的卷积设计了一个新的模块——DSC模块以替代C2f中的Bottlenck模块,并命名为C2fDSC模块。此外,为了进一步加强表格结构的角落局部特征提取,在YOLOv8的骨干网络上加入了显示中心特征调节(explicit visual center feature adjustment,EVC)模块。最后,将原模型的损失函数替换为MPDIoU,在解决密集目标回归精度问题时,相较于原始模型损失函数,MPDIoU损失函数边界框回归的准确性和效率更高。实验结果表明,该表格结构检测算法在数据集ICDAR19-cTDaR上取得了目前最佳的实验效果(SOTA),单元格查准率、查全率和F1值分别为91.7%、82.3%和86.7%,在数据集TabStructDB表格行列检测中也取得了非常实用的性能结果。 展开更多
关键词 YOLOv8 EVC模块 C2fDSC模块 mpdiou损失函数 最佳性能
下载PDF
基于改进YOLOv7的PCB缺陷检测算法
3
作者 张旭 陈慈发 董方敏 《计算机工程》 CAS CSCD 北大核心 2024年第12期318-328,共11页
在PCB缺陷检测领域中检测精度的提高一直是1个具有挑战性的任务。为了解决这个问题,提出一系列基于PCB缺陷检测的改进方法。首先,引入一种新的注意力机制,即BiFormer注意力机制,这种机制利用双层路由实现动态的稀疏注意力,从而减少计算... 在PCB缺陷检测领域中检测精度的提高一直是1个具有挑战性的任务。为了解决这个问题,提出一系列基于PCB缺陷检测的改进方法。首先,引入一种新的注意力机制,即BiFormer注意力机制,这种机制利用双层路由实现动态的稀疏注意力,从而减少计算量;其次,采用一种创新的上采样算子CARAFE,能够结合语义信息与内容信息进行上采样,使得上采样过程更加全面且高效;最后,基于MPDIoU度量采用一种新的损失函数,即LMPDIoU损失函数,能够有效地处理不平衡类别、小目标和密集性问题,从而进一步提高图像检测的性能。实验结果表明,所提改进后的模型在平均精度均值(mAP)方面取得了显著提高,达到了93.91%,与原YOLOv5模型相比提高了13.12个百分点,同时,在识别精度方面,所提改进后的模型表现也非常出色,达到了90.55%,与原YOLOv5模型相比提高了8.74个百分点。引入BiFormer注意力机制、CARAFE上采样算子以及LMPDIoU损失函数,对于提高PCB缺陷检测的精度和效率具有非常积极的作用,为工业检测领域的研究提供了有价值的参考。 展开更多
关键词 PCB缺陷 BiFormer注意力机制 mpdiou损失函数 上采样算子CARAFE 目标检测
下载PDF
基于YOLOv8n的轻量级巴旦木果实识别方法
4
作者 方国文 何超 王鑫泽 《江苏农业学报》 CSCD 北大核心 2024年第9期1662-1670,共9页
在果园环境下,快速精准识别巴旦木果实对提升巴旦木采摘机器人的作业精度和效率至关重要。为减少果园场景中因树叶遮挡或果实重叠导致的巴旦木果实漏检现象,降低计算量和参数量,提高果实识别模型的性能和准确度,本研究在YOLOv8n模型的... 在果园环境下,快速精准识别巴旦木果实对提升巴旦木采摘机器人的作业精度和效率至关重要。为减少果园场景中因树叶遮挡或果实重叠导致的巴旦木果实漏检现象,降低计算量和参数量,提高果实识别模型的性能和准确度,本研究在YOLOv8n模型的基础上,利用ContextGuide模块替换原模型中主干网络(Backbone)部分基本构成单元C2f中的Bottleneck模块,利用BiFPN模块替代原模型中颈部网络(Neck)部分中的PANet模块,同时引入MPDIoU损失函数替换原模型中的CIoU损失函数,提出了一种改进的轻量级巴旦木果实检测模型(YOLOv8n-BCG)。并利用公开的巴旦木影像数据集对优化后的模型性能进行比较分析。结果表明,改进后模型参数量仅为1.528 M,平均精度值(mAP 0.50∶0.95)为69.7%,相比于原YOLOv8n模型提升0.5个百分点。与YOLOv5s、YOLOv5n、YOLOv7-tiny、Faster R-CNN等模型相比,YOLOv8n-BCG模型具有更低的浮点计算量和更高的检测精度值。本研究结果可为高效的巴旦木果实采摘机器人自动化作业提供技术支持。 展开更多
关键词 巴旦木 果实识别 BiFPN ContextGuide mpdiou损失函数 YOLOv8n
下载PDF
基于改进的YOLOv5s绝缘子故障识别方法
5
作者 刘玉洁 金钧 《机械与电子》 2024年第12期31-36,共6页
为解决高速铁路绝缘子故障检测中常见的错检、漏检等问题,以YOLOv5s算法为基础进行优化提出TASM YOLOv5算法。首先,增加Triplet注意力机制,以提升算法的特征提取能力;其次,引入AFPN渐进特征金字塔网络来提高特征融合利用能力,并且选用S... 为解决高速铁路绝缘子故障检测中常见的错检、漏检等问题,以YOLOv5s算法为基础进行优化提出TASM YOLOv5算法。首先,增加Triplet注意力机制,以提升算法的特征提取能力;其次,引入AFPN渐进特征金字塔网络来提高特征融合利用能力,并且选用SiLU控制激活函数以提高稳定性;最后,更换损失函数为MPDIoU损失函数,可实现准确有效的边界框回归。实验结果表明,TASM YOLOv5算法的平均准确率较高,所得权重文件大小符合轻量化的要求,能有效提高绝缘子故障检测的精度。 展开更多
关键词 绝缘子故障识别 YOLOv5s网络 AFPN mpdiou损失函数
下载PDF
基于DCGAN和改进YOLOv5s的钢丝帘布缺陷检测方法 被引量:1
6
作者 黄鹏 蔡露 +2 位作者 陈彬 周益航 易冬旺 《电子测量技术》 北大核心 2024年第3期144-155,共12页
为解决钢丝帘布表面缺陷检测准确率低且泛化能力不强的问题,提出了一种基于DCGAN和改进YOLOv5s的缺陷检测方法。首先,通过调整DCGAN网络参数并优化超参数,使生成器能够生成具有丰富特征和清晰纹理的钢丝帘布缺陷图像,从而扩充数据集;其... 为解决钢丝帘布表面缺陷检测准确率低且泛化能力不强的问题,提出了一种基于DCGAN和改进YOLOv5s的缺陷检测方法。首先,通过调整DCGAN网络参数并优化超参数,使生成器能够生成具有丰富特征和清晰纹理的钢丝帘布缺陷图像,从而扩充数据集;其次,采用K-means++算法对钢丝帘布缺陷数据重新聚类锚框,以获得更优的锚框参数,实现锚框与实际缺陷的精确匹配;然后,在YOLOv5s主干网络中的C3模块添加坐标注意力机制,以增强模型的特征提取能力和精确定位能力;最后,引入MPDIoU损失函数替换YOLOv5s原损失函数,进一步提高检测精度。实验结果表明,在实测钢丝帘布缺陷数据集上,采用DCGAN数据增强和改进后的YOLOv5s检测模型,缺陷检测平均精度提高了6.6%,达到了89.4%,并且检测准确率和召回率也有所提高。与其他主流检测模型相比,该模型不仅在检测速度上提高了约30%,还保持较高的检测精度。在公开的NEU-DET数据集上,该模型的mAP值达到了82.6%,较原始YOLOv5s模型提高了3.8%。 展开更多
关键词 钢丝帘布缺陷检测 生成对抗网络 K-means++ 注意力机制 mpdiou损失函数
下载PDF
基于改进型YOLOv9的绝缘子及缺陷检测 被引量:2
7
作者 罗希 贺强 +1 位作者 张宁轩 石超君 《机电工程技术》 2024年第10期197-202,共6页
目前的绝缘子及缺陷目标检测算法中普遍存在着诸如误检、漏检和检测精度低等一系列问题,提出一种改进的YOLOv9绝缘子及缺陷目标检测算法来更好地检测绝缘子及其残缺缺陷。首先,在YOLOv9的核心模块RepNCSPELAN中嵌入多样性分支块DBB,DBB... 目前的绝缘子及缺陷目标检测算法中普遍存在着诸如误检、漏检和检测精度低等一系列问题,提出一种改进的YOLOv9绝缘子及缺陷目标检测算法来更好地检测绝缘子及其残缺缺陷。首先,在YOLOv9的核心模块RepNCSPELAN中嵌入多样性分支块DBB,DBB可以增强单个卷积的表示能力,丰富特征空间,提高模型的特征提取能力,提升模型性能,同时基本不增加推理时间成本。其次,使用Haar小波的下采样HWD替换传统下采样,可以降低特征图的空间分辨率,同时保留尽可能多的信息,并且与传统的下采样方法相比,可以有效降低信息不确定性。最后使用MPDIoU作为模型的损失函数,MPDIoU通过直接计算预测框和真实框之间的关键点距离,能更准确地反映预测框和真实框之间的差异,从而提升模型的平均精度。在绝缘子及缺陷数据集上,改进后的算法YOLOv9-DHM的平均检测精度(Mean Average Precision,mAP)提高至96.8%,相比于原始算法提高了2.2%,精确率和召回率分别提高至95.4%和94.5%。改进后的算法相比原始算法,平均检测精度有明显提升,证明了算法改进后的可行性。 展开更多
关键词 绝缘子及缺陷检测 YOLOv9 特征提取 mpdiou损失函数 下采样
下载PDF
基于注意力机制的DA-YOLO缺陷检测算法 被引量:1
8
作者 赵平 周永霞 《中国计量大学学报》 2024年第2期326-332,348,共8页
目的:针对钢面缺陷检测中特征提取不足或丢失的问题进行改进,从而提升检测的准确性。方法:提出一种基于注意力机制的DA-YOLO缺陷检测算法。该算法以YOLOv8s为基础网络,在主干网络末端加入一种新的双重注意力机制,以增强特征提取能力,避... 目的:针对钢面缺陷检测中特征提取不足或丢失的问题进行改进,从而提升检测的准确性。方法:提出一种基于注意力机制的DA-YOLO缺陷检测算法。该算法以YOLOv8s为基础网络,在主干网络末端加入一种新的双重注意力机制,以增强特征提取能力,避免缺陷信息丢失过多。同时,为了精确定位缺陷,引入MPDIoU损失代替CIoU进行边界框优化。结果:DA-YOLO算法在NEU-DET钢面数据集上平均精度均值(mean average precision,mAP)为80.5%,比YOLOv8s增长了3.8%。结论:DA-YOLO算法实现了更好的检测效果,相比YOLOv8s更适合应用于钢面缺陷检测任务中。 展开更多
关键词 缺陷检测 注意力机制 mpdiou损失
下载PDF
基于改进YOLOv8的自然环境下柑橘果实识别
9
作者 余圣新 韦莹莹 +4 位作者 方辉 李敏 柴秀娟 曾志康 覃泽林 《湖北农业科学》 2024年第8期23-27,共5页
为实现柑橘果实的精准快速识别,提出了一种改进YOLOv8网络模型。首先将YOLOv8网络模型中的部分传统卷积替换为ODConv全维动态卷积,以增强YOLOv8网络模型在复杂的自然环境下的适应能力,然后将YOLOv8的CIoU损失函数替换为MPDIoU损失函数,... 为实现柑橘果实的精准快速识别,提出了一种改进YOLOv8网络模型。首先将YOLOv8网络模型中的部分传统卷积替换为ODConv全维动态卷积,以增强YOLOv8网络模型在复杂的自然环境下的适应能力,然后将YOLOv8的CIoU损失函数替换为MPDIoU损失函数,解决了CIoU损失函数在特殊情况下退化的问题,接着通过消融试验,分别验证了ODConv全维动态卷积与MPDIoU损失函数的有效性,改进后YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l、YOLOv8x的平均识别精度mAP分别从86.40%、88.92%、88.97%、88.99%、89.11%提高至88.25%、89.32%、89.57%、89.90%、90.12%。试验结果表明,ODConv全维动态卷积与MPDIoU损失函数能有效提高YOLOv8网络模型在自然环境下的柑橘果实识别能力。 展开更多
关键词 柑橘果实识别 卷积神经网络 YOLOv8 ODConv全维动态卷积 mpdiou损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部