uv-decomposition method for solving a mathematical program with equilibrium constraints (MPEC) problem with linear complementarity constraints is presented. The problem is first converted into a nonlinear programmin...uv-decomposition method for solving a mathematical program with equilibrium constraints (MPEC) problem with linear complementarity constraints is presented. The problem is first converted into a nonlinear programming one. The structure of subdifferential a corresponding penalty function and results of its uv-decomposition are given. A conceptual algorithm for solving this problem with a superUnear convergence rate is then constructed in terms of the obtained results.展开更多
Large-scale centralized exploitation of intermittent wind energy resources has become popular in many countries.However,as a result of the frequent occurrence of largescale wind curtailment,expansion of corresponding ...Large-scale centralized exploitation of intermittent wind energy resources has become popular in many countries.However,as a result of the frequent occurrence of largescale wind curtailment,expansion of corresponding transmission projects has fallen behind the speed at which installed wind capacity can be developed.In this paper,a coordinated planning approach for a large-scale wind farm integration system and its related regional transmission network is proposed.A bilevel programming model is formulated with the objective of minimizing cost.To reach the global optimum of the bi-level model,this work proposes that the upper-level wind farm integration system planning problem needs to be solved jointly with the lower-level regional transmission planning problem.The bi-level model is expressed in terms of a linearized mathematical problem with equilibrium constraints(MPEC)by Karush-KuhnTucker conditions.It is then solved using mixed integer linear programming solvers.Numerical simulations are conducted to show the validity of the proposed coordinated planning method.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.10372063,10771026 and 10471015)
文摘uv-decomposition method for solving a mathematical program with equilibrium constraints (MPEC) problem with linear complementarity constraints is presented. The problem is first converted into a nonlinear programming one. The structure of subdifferential a corresponding penalty function and results of its uv-decomposition are given. A conceptual algorithm for solving this problem with a superUnear convergence rate is then constructed in terms of the obtained results.
基金supported in part by the National High Technology Research and Development Program of China(No.2012AA050208)National Natural Science Foundation of China(No.51177043)111 Project(No.B08013).
文摘Large-scale centralized exploitation of intermittent wind energy resources has become popular in many countries.However,as a result of the frequent occurrence of largescale wind curtailment,expansion of corresponding transmission projects has fallen behind the speed at which installed wind capacity can be developed.In this paper,a coordinated planning approach for a large-scale wind farm integration system and its related regional transmission network is proposed.A bilevel programming model is formulated with the objective of minimizing cost.To reach the global optimum of the bi-level model,this work proposes that the upper-level wind farm integration system planning problem needs to be solved jointly with the lower-level regional transmission planning problem.The bi-level model is expressed in terms of a linearized mathematical problem with equilibrium constraints(MPEC)by Karush-KuhnTucker conditions.It is then solved using mixed integer linear programming solvers.Numerical simulations are conducted to show the validity of the proposed coordinated planning method.