In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie...In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.展开更多
An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes t...An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes the limitation of the conventional adaptive neural control design where the modeling error brought by neural networks is assumed to be bounded over a compact set. Moreover, the generalized matching conditions are also relaxed in the proposed L 2 control design as the gains for the external disturbances entering the system are allowed to have unknown upper bounds.展开更多
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN...针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。展开更多
Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 a...Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.展开更多
基金supported by the National Natural Science Foundation of China(61803085,61806052,U1713209)the Natural Science Foundation of Jiangsu Province of China(BK20180361)
文摘In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.
文摘An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes the limitation of the conventional adaptive neural control design where the modeling error brought by neural networks is assumed to be bounded over a compact set. Moreover, the generalized matching conditions are also relaxed in the proposed L 2 control design as the gains for the external disturbances entering the system are allowed to have unknown upper bounds.
文摘针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。
基金co-supported by the National Science and Technology Major Project, China (No. J2019-Ⅰ-0010-0010)the Project funded by China Postdoctoral Science Foundation (No. 2021M701692)+3 种基金the Fundamental Research Funds for the Central Universities, China (No. NS2022029)the Postgraduate Research & Practice Innovation Program of NUAA, China (No. xcxjh20220206)the National Natural Science Foundation of China (No. 51976089)Jiangsu Funding Program for Excellent Postdoctoral Talent, China (No. 2022ZB202)。
文摘Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Natural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
文摘压缩是高光谱遥感(hyperspectral remote sensing)图像的一个重要研究领域.文中充分考虑了高光谱遥感图像的谱间相关性较强而空间相关性相对较弱的特点,采用了自适应波段选择降维方法与基于神经网络的矢量量化方法相结合的方法对高光谱遥感图像进行压缩.首先采用自适应波段选择(Adaptive band selection)的谱间压缩方法,通过自适应地选择信息量大并且与其他波段相关性小的波段来降低高光谱数据量.然后对降维后图像在空间进行小波变换并进行矢量量化,最后对量化后数据进行自适应算术编码.实验结果表明,谱间压缩能够保留信息丰富的波段,同时计算复杂度大大降低;基于神经网络的SOFM算法及其改进算法取得较好的空间压缩效果,实现了对高光谱遥感图像的有效压缩.