期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ShuffleNet V2算法的三维视线估计 被引量:1
1
作者 王宇 宁媛 陈进军 《计算技术与自动化》 2022年第1期87-92,共6页
为了解决当前视线估计网络复杂度较深、精度不高的问题,同时为了未来将网络部署在移动设备端,提出了一种基于ShuffleNet V2算法的视线估计网络,其由脸部和眼睛两个子网络构成。脸部子网络通过ResNet V2网络对脸部图片进行特征处理,并加... 为了解决当前视线估计网络复杂度较深、精度不高的问题,同时为了未来将网络部署在移动设备端,提出了一种基于ShuffleNet V2算法的视线估计网络,其由脸部和眼睛两个子网络构成。脸部子网络通过ResNet V2网络对脸部图片进行特征处理,并加入人脸对齐算法,减少头部角度误差的影响。眼睛子网络通过ShuffleNet V2与ResNet V2算法进行眼睛图片的并行特征处理。网络对特征图片处理后得到角度参数,最后通过坐标变换得到视线角度。并在MPIIGaze数据集上进行了实验。针对精度的不足对算法进行改进,在ShuffleNet V2中加入注意力机制(逐点平方操作模块),并进行了改进算法的验证实验,最后和多种先进的算法进行了实验对比。实验表明,改进后的算法比其他算法的精度要高。 展开更多
关键词 神经网络 三维视线估计 ShuffleNet V2 ResNet V2 坐标变换 人脸对齐 注意力机制 mpiigaze
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部