The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or mic...The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.展开更多
This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations t...This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations that are technically difficult to realize and their cost is higher. The modelling and dimensioning of foundations on a ballasted column will be an important contribution to the state of the art of this method because it will highlight the mode of transfer of loads, and will expose the induced deformations by also allowing to verification criteria of bearing capacity and allowable settlement according to geometric information of the model. The columns on a substrate located at 9 m have a length of 9 m and a diameter of 40 cm and were obtained by incorporating ballast of granular class 0/31.5 of internal friction angle of 38˚ and a density weight of 21 kN/m3. The choice of this method is based on the geotechnical characteristics of the initial soil. Thus, identification and characterization tests were carried out to estimate the bearing capacity and the settlement giving respectively 125 kPa and 57 cm. These results show the ground does not have sufficient mechanical properties to withstand the loads transmitted by the tank. By adopting the reinforcement of the soil with ballasted columns, numerical calculations show that after applying a load equal to 265.1 KPa, 20 cm vertical settlement and 17 cm horizontal displacement were obtained. This is in the tolerable deformation range for our tank, namely, less than 20 cm. Analytically, in addition to reducing settlement, ballasted columns, Due to their high stiffness, they have effectively contributed to the increase of the permissible soil stress up to 257 kPa.展开更多
We present comparisons of the NO2 regional Chemical Transport Model (CTM) simulations over North-eastern North America during the time period from May to September, 1998 with hourly surface NO2 observations and the ...We present comparisons of the NO2 regional Chemical Transport Model (CTM) simulations over North-eastern North America during the time period from May to September, 1998 with hourly surface NO2 observations and the NO2 columns retrieved from the GOME (Global Ozone Monitoring Experiment) satellite instrument. The model calculations were performed using the Mesoscale Meteorological Model 5 (MM5), Sparse Matrix Operator Kernal Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ) modeling systems, using the emission data from the National Emissions Inventory (NEI) databases of 1996 (U.S.) and 1995 (Canada). The major objectives were to assess the performance of the CMAQ model and the accuracy of the emissions inventories as they affected the simulations of this important short-lived atmospheric species. The modeled (NcMAQ) and measured (NGOME) NO2 column amounts, as well as their temporal variations, agreed reasonably well. The absolute differences (NcMAQ-NGOME) across the domain were between ±3.0×10^15 molecules cm^-2, but they were less than ±1.0×10^15 molecules cm^-2 over the majority (80%) of the domain studied. The overall correlation coefficient between the measurements and the simulations was 0.75. The differences were mainly ascribed to a combination of inaccurate emission data for the CTM and the uncertainties in the GOME retrievals. Of these, the former were the more easily identifiable.展开更多
BACKGROUND Gastric cancer is a leading cause of cancer-related deaths worldwide.Prognostic assessments are typically based on the tumor-node-metastasis(TNM)staging system,which does not account for the molecular heter...BACKGROUND Gastric cancer is a leading cause of cancer-related deaths worldwide.Prognostic assessments are typically based on the tumor-node-metastasis(TNM)staging system,which does not account for the molecular heterogeneity of this disease.LATS2,a tumor suppressor gene involved in the Hippo signaling pathway,has been identified as a potential prognostic biomarker in gastric cancer.AIM To construct and validate a nomogram model that includes LATS2 expression to predict the survival prognosis of advanced gastric cancer patients following ra-dical surgery,and compare its predictive performance with traditional TNM staging.METHODS A retrospective analysis of 245 advanced gastric cancer patients from the Fourth Hospital of Hebei Medical University was conducted.The patients were divided into a training group(171 patients)and a validation group(74 patients)to deve-lop and test our prognostic model.The performance of the model was determined using C-indices,receiver operating characteristic curves,calibration plots,and decision curves.RESULTS The model demonstrated a high predictive accuracy with C-indices of 0.829 in the training set and 0.862 in the validation set.Area under the curve values for three-year and five-year survival prediction were significantly robust,suggesting an excellent discrimination ability.Calibration plots confirmed the high concordance between the predictions and actual survival outcomes.CONCLUSION We developed a nomogram model incorporating LATS2 expression,which significantly outperformed conven-tional TNM staging in predicting the prognosis of advanced gastric cancer patients postsurgery.This model may serve as a valuable tool for individualized patient management,allowing for more accurate stratification and im-proved clinical outcomes.Further validation in larger patient cohorts will be necessary to establish its generaliza-bility and clinical utility.展开更多
A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorptio...A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.展开更多
Carbon dioxide (CO2) removal is an essential step in natural gas (NG) processing to provide high quality gas stream products and minimize operational difficulties. This preliminary study alms to investigate the re...Carbon dioxide (CO2) removal is an essential step in natural gas (NG) processing to provide high quality gas stream products and minimize operational difficulties. This preliminary study alms to investigate the removal of CO2 at high concentration level from the mixture of CO2-NG gas stream at elevated pressure via absorption process. This is to explore the possibility of exploring high CO2 content natural gas reserves by treatment at offshore platform. A mixed amine solvent, Stonvent-II, was used for the absorption of approximately 75 vol% CO2 in CO2-NG stream at a pressure of 10 barg. The initial solvent temperature was varied in order to study the impact of initial temperature on the absorption performance. Preliminary study at temperatures of 35 ℃ and 45 ℃ indicates that Stonvent-II was able to perform almost 100% removal of CO2 under both conditions. However, the CO2 absorption effect took place faster when the initial liquid temperature was lower. This is because when the initial liquid temperature is high, the temperature increase in the packing bed caused by the reaction heat is high which impacts the efficiency of absorption negatively.展开更多
基金financial support from National Natural Science Foundation of China(22108263)Shanxi Province Basic Research Program Project(20210302124060)the 18th Graduate Student Technology Project of North University of China(20221824).
文摘The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.
文摘This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations that are technically difficult to realize and their cost is higher. The modelling and dimensioning of foundations on a ballasted column will be an important contribution to the state of the art of this method because it will highlight the mode of transfer of loads, and will expose the induced deformations by also allowing to verification criteria of bearing capacity and allowable settlement according to geometric information of the model. The columns on a substrate located at 9 m have a length of 9 m and a diameter of 40 cm and were obtained by incorporating ballast of granular class 0/31.5 of internal friction angle of 38˚ and a density weight of 21 kN/m3. The choice of this method is based on the geotechnical characteristics of the initial soil. Thus, identification and characterization tests were carried out to estimate the bearing capacity and the settlement giving respectively 125 kPa and 57 cm. These results show the ground does not have sufficient mechanical properties to withstand the loads transmitted by the tank. By adopting the reinforcement of the soil with ballasted columns, numerical calculations show that after applying a load equal to 265.1 KPa, 20 cm vertical settlement and 17 cm horizontal displacement were obtained. This is in the tolerable deformation range for our tank, namely, less than 20 cm. Analytically, in addition to reducing settlement, ballasted columns, Due to their high stiffness, they have effectively contributed to the increase of the permissible soil stress up to 257 kPa.
文摘We present comparisons of the NO2 regional Chemical Transport Model (CTM) simulations over North-eastern North America during the time period from May to September, 1998 with hourly surface NO2 observations and the NO2 columns retrieved from the GOME (Global Ozone Monitoring Experiment) satellite instrument. The model calculations were performed using the Mesoscale Meteorological Model 5 (MM5), Sparse Matrix Operator Kernal Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ) modeling systems, using the emission data from the National Emissions Inventory (NEI) databases of 1996 (U.S.) and 1995 (Canada). The major objectives were to assess the performance of the CMAQ model and the accuracy of the emissions inventories as they affected the simulations of this important short-lived atmospheric species. The modeled (NcMAQ) and measured (NGOME) NO2 column amounts, as well as their temporal variations, agreed reasonably well. The absolute differences (NcMAQ-NGOME) across the domain were between ±3.0×10^15 molecules cm^-2, but they were less than ±1.0×10^15 molecules cm^-2 over the majority (80%) of the domain studied. The overall correlation coefficient between the measurements and the simulations was 0.75. The differences were mainly ascribed to a combination of inaccurate emission data for the CTM and the uncertainties in the GOME retrievals. Of these, the former were the more easily identifiable.
文摘BACKGROUND Gastric cancer is a leading cause of cancer-related deaths worldwide.Prognostic assessments are typically based on the tumor-node-metastasis(TNM)staging system,which does not account for the molecular heterogeneity of this disease.LATS2,a tumor suppressor gene involved in the Hippo signaling pathway,has been identified as a potential prognostic biomarker in gastric cancer.AIM To construct and validate a nomogram model that includes LATS2 expression to predict the survival prognosis of advanced gastric cancer patients following ra-dical surgery,and compare its predictive performance with traditional TNM staging.METHODS A retrospective analysis of 245 advanced gastric cancer patients from the Fourth Hospital of Hebei Medical University was conducted.The patients were divided into a training group(171 patients)and a validation group(74 patients)to deve-lop and test our prognostic model.The performance of the model was determined using C-indices,receiver operating characteristic curves,calibration plots,and decision curves.RESULTS The model demonstrated a high predictive accuracy with C-indices of 0.829 in the training set and 0.862 in the validation set.Area under the curve values for three-year and five-year survival prediction were significantly robust,suggesting an excellent discrimination ability.Calibration plots confirmed the high concordance between the predictions and actual survival outcomes.CONCLUSION We developed a nomogram model incorporating LATS2 expression,which significantly outperformed conven-tional TNM staging in predicting the prognosis of advanced gastric cancer patients postsurgery.This model may serve as a valuable tool for individualized patient management,allowing for more accurate stratification and im-proved clinical outcomes.Further validation in larger patient cohorts will be necessary to establish its generaliza-bility and clinical utility.
基金The National Natural Science Foundation of China(No.51276038)
文摘A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.
文摘Carbon dioxide (CO2) removal is an essential step in natural gas (NG) processing to provide high quality gas stream products and minimize operational difficulties. This preliminary study alms to investigate the removal of CO2 at high concentration level from the mixture of CO2-NG gas stream at elevated pressure via absorption process. This is to explore the possibility of exploring high CO2 content natural gas reserves by treatment at offshore platform. A mixed amine solvent, Stonvent-II, was used for the absorption of approximately 75 vol% CO2 in CO2-NG stream at a pressure of 10 barg. The initial solvent temperature was varied in order to study the impact of initial temperature on the absorption performance. Preliminary study at temperatures of 35 ℃ and 45 ℃ indicates that Stonvent-II was able to perform almost 100% removal of CO2 under both conditions. However, the CO2 absorption effect took place faster when the initial liquid temperature was lower. This is because when the initial liquid temperature is high, the temperature increase in the packing bed caused by the reaction heat is high which impacts the efficiency of absorption negatively.