Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite...Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.展开更多
Benzo[4,5]imidazo[1,2-a]pyrimidine-based derivatives play crucial roles in medicines,pesticides,tracers and photoelectric materials.However,their synthesis approach still needs to be optimized,and their fluorescent pr...Benzo[4,5]imidazo[1,2-a]pyrimidine-based derivatives play crucial roles in medicines,pesticides,tracers and photoelectric materials.However,their synthesis approach still needs to be optimized,and their fluorescent properties in intracellular microenvironment are unclear.Here,a Cu(II)-catalyzed cascade coupling cyclization reaction was successfully developed to synthesize benzo[4,5]imidazo[1,2-a]pyrimidine scaffold with mild reaction conditions,broad substrate scopes and high yields.After a system study,we found that compound 4aa displayed an optimal viscosity-specific response with remarkable fluorescence enhancement(102-fold)for glycerol at 490 nm.Particularly,4aa possessed excellent structure-inherent targeting(SIT)capability for lysosome(P=0.95)with high p H stability and large Stokes shift.Importantly,4aa was validated for its effectiveness in diagnosing lysosomal storage disorders(LSD)in living cells.The 4aa also showed its potential to map the micro-viscosity and its metabolism process in zebrafish.This work not only affords an efficient protocol to fabricate benzo[4,5]imidazo[1,2-a]pyrimidine derivatives,reveals this skeleton has excellent SIT features for lysosome,but also manifests that 4aa can serve as a practical tool to monitor lysosomal viscosity and diagnose LSD.展开更多
This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the Chi...This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.展开更多
采用固相反应法制备了Ca_(0.94)Ce_(0.06)Bi_(4)Ti_(4-x)Nb_(x)O_(15)(CCBTN)铋层状高温压电陶瓷,研究了B位Nb掺杂对陶瓷晶体结构、微观形貌、介电、压电性能的影响规律。结果表明:制备的CCBTN陶瓷均具有单一的铋层状结构相,少量Nb掺杂...采用固相反应法制备了Ca_(0.94)Ce_(0.06)Bi_(4)Ti_(4-x)Nb_(x)O_(15)(CCBTN)铋层状高温压电陶瓷,研究了B位Nb掺杂对陶瓷晶体结构、微观形貌、介电、压电性能的影响规律。结果表明:制备的CCBTN陶瓷均具有单一的铋层状结构相,少量Nb掺杂有利于陶瓷压电常数及热稳定性能的提升。当Nb掺杂量x=0.06时,陶瓷具有最高的压电常数(d33=19.2pC·N^(-1)),是纯CBT陶瓷压电常数(d33=8 p C·N^(-1))的2.4倍,且退火至500℃时其压电常数仍保持室温值的90%以上,表现出较优异的热稳定性。同时,该陶瓷具有高的居里温度(Tc=769℃)、低的介电损耗(tanδ=0.65%)及高的电阻率(ρdc=2.0×10^(7)Ω·cm@500℃),是高温压电传感器制作的优异候选材料。展开更多
Three-dimensional (3D) hierarchical Co3O4 microcrystal with radial dendritic morphologies was prepared through hydrothermal reactions followed by subsequent annealing treatment. Structural and morphological characte...Three-dimensional (3D) hierarchical Co3O4 microcrystal with radial dendritic morphologies was prepared through hydrothermal reactions followed by subsequent annealing treatment. Structural and morphological characterizations were performed by X-ray diffraction, scan-ning electron microscopy and transmission electron microscopy. The gas sensing properties of the as-obtained microcrystal were investigated at 110 oC, which revealed that the 3D hierarchical porous Co3O4 microcrystal exhibited high sensitivity to ammonia, as well as a short response time of 10 s. The response characteristic indicates that the sensor has a good stability and reversibility. Detections of toxic and flammable gases, such as ethanol, acetone and benzene were also carried out at a relative low temperature. The results indicate that such hierarchical Co3O4 microcrystal would be a potential material in the field of gas sensing.展开更多
A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichl...A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.展开更多
A new Zn(Ⅱ) coordination polymer, [Zn(4-PP)(1,4-BDC)?(H_2O)]_n(1, 4-PP = 4-(1 H-pyrazol-3-yl)pyridine, 1,4-H_2BDC = 1,4-benzenedicarboxylic acid), has been synthesized and structurally characterized by single-crystal...A new Zn(Ⅱ) coordination polymer, [Zn(4-PP)(1,4-BDC)?(H_2O)]_n(1, 4-PP = 4-(1 H-pyrazol-3-yl)pyridine, 1,4-H_2BDC = 1,4-benzenedicarboxylic acid), has been synthesized and structurally characterized by single-crystal X-ray diffraction as well as elemental analysis, IR spectra, XRPD and TG. Structural analysis reveals that Zn(Ⅱ) ions are bridged by COO-from 1,4-BDC^(2-)to form a binuclear structure as the second building units(SBUs). Zn_2 clusters can be clarified as 4-connected nodes, so the framework of 1 can be considered as a 2 D(44?62)-sql sheet. Fluorescence measurements show that 1 has highly selective and sensitive detection of Fe^(3+) in water medium.展开更多
Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time ...Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.展开更多
A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containin...A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.展开更多
SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers ...SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.展开更多
In the present paper,the electron beam irradiation was used to improve gas sensing properties of ZnGa_2O_4 gas sensors.The effects of electron beam irradiation on the performance of ZnGa_2O_4 gas sensors were reported...In the present paper,the electron beam irradiation was used to improve gas sensing properties of ZnGa_2O_4 gas sensors.The effects of electron beam irradiation on the performance of ZnGa_2O_4 gas sensors were reported.Results show that the sensitivity of ZnGa_2O_4 gas sensors to various gases increased after electron beam irradiation,and the optimal working temperature decreased.The effect of irradiation dose and the reaction mechanism were discussed.展开更多
Abstract--Poly4-vinylphenol (P4VP)/multi-wan carbon nanotubes (MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature. The...Abstract--Poly4-vinylphenol (P4VP)/multi-wan carbon nanotubes (MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature. The surface and section morphologies of the multi-layer films were observed by a scanning electron microscope (SEM). It is found that the resistance of the sensor increases when it is exposed to toluene vapor and the response has a good linearity with the concentration of toluene. The results show that the P4VP/MWNTs three-layer film sensors have better sensing properties compared with the two-layer film sensors. The related sensing mechanism is studied in detail.展开更多
基金Project(2108085ME184)supported by the Natural Science Foundation of Anhui Province,ChinaProject(2022AH010019)supported by the Innovation Team Project of Anhui Provincial Department of Education,China+1 种基金Project(GXXT-2021-057)supported by the Collaborative Innovation Project of Anhui Provincial Department of Education,ChinaProject(2020QDZ36)supported by the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University,China。
文摘Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.22077099,22171223 and 22307102)the Innovation Capability Support Program of Shaanxi(Nos.2023-CXTD-75 and 2022KJXX-32)+5 种基金the Technology Innovation Leading Program of Shaanxi(Nos.2023KXJ-209 and 2024QCY-KXJ-142)the Key Research and Development Program of Shaanxi(No.2024GHZDXM-22)the Natural Science Basic Research Program of Shaanxi(Nos.2023-JC-YB-141 and 2022JQ-151)Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.SWYY202206)the Shaanxi Fundamental Science Research Project for Chemistry&Biology(Nos.22JHZ010 and 22JHQ080)the Yan’an City Science and Technology Project(No.2022SLZDCY-002)。
文摘Benzo[4,5]imidazo[1,2-a]pyrimidine-based derivatives play crucial roles in medicines,pesticides,tracers and photoelectric materials.However,their synthesis approach still needs to be optimized,and their fluorescent properties in intracellular microenvironment are unclear.Here,a Cu(II)-catalyzed cascade coupling cyclization reaction was successfully developed to synthesize benzo[4,5]imidazo[1,2-a]pyrimidine scaffold with mild reaction conditions,broad substrate scopes and high yields.After a system study,we found that compound 4aa displayed an optimal viscosity-specific response with remarkable fluorescence enhancement(102-fold)for glycerol at 490 nm.Particularly,4aa possessed excellent structure-inherent targeting(SIT)capability for lysosome(P=0.95)with high p H stability and large Stokes shift.Importantly,4aa was validated for its effectiveness in diagnosing lysosomal storage disorders(LSD)in living cells.The 4aa also showed its potential to map the micro-viscosity and its metabolism process in zebrafish.This work not only affords an efficient protocol to fabricate benzo[4,5]imidazo[1,2-a]pyrimidine derivatives,reveals this skeleton has excellent SIT features for lysosome,but also manifests that 4aa can serve as a practical tool to monitor lysosomal viscosity and diagnose LSD.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210441)the National Natural Science Foundation of China(Nos.U2167208,11875223)。
文摘This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.
文摘采用固相反应法制备了Ca_(0.94)Ce_(0.06)Bi_(4)Ti_(4-x)Nb_(x)O_(15)(CCBTN)铋层状高温压电陶瓷,研究了B位Nb掺杂对陶瓷晶体结构、微观形貌、介电、压电性能的影响规律。结果表明:制备的CCBTN陶瓷均具有单一的铋层状结构相,少量Nb掺杂有利于陶瓷压电常数及热稳定性能的提升。当Nb掺杂量x=0.06时,陶瓷具有最高的压电常数(d33=19.2pC·N^(-1)),是纯CBT陶瓷压电常数(d33=8 p C·N^(-1))的2.4倍,且退火至500℃时其压电常数仍保持室温值的90%以上,表现出较优异的热稳定性。同时,该陶瓷具有高的居里温度(Tc=769℃)、低的介电损耗(tanδ=0.65%)及高的电阻率(ρdc=2.0×10^(7)Ω·cm@500℃),是高温压电传感器制作的优异候选材料。
基金ACKNOWLEDGMENTS This work was supported by the 211 project of Anhui University, the National Natural Science Foundation of China (No.11374013, No.61290301, No.51072001, No.51272001, and No.51272003), Anhui Provincial Natural Science Fund (No.l1040606M49), Higher Educational Natural Science Foundation of Anhui Province (No.KJ2012A007), and the PhD Start-up Fund of Anhui University (No.33190209). Ming-zai Wu thanks Dr. Fan-li Meng and Miss Hui-hua Li from the Institute of Intelligent Machines, CAS for the help with gas sensing experiment.
文摘Three-dimensional (3D) hierarchical Co3O4 microcrystal with radial dendritic morphologies was prepared through hydrothermal reactions followed by subsequent annealing treatment. Structural and morphological characterizations were performed by X-ray diffraction, scan-ning electron microscopy and transmission electron microscopy. The gas sensing properties of the as-obtained microcrystal were investigated at 110 oC, which revealed that the 3D hierarchical porous Co3O4 microcrystal exhibited high sensitivity to ammonia, as well as a short response time of 10 s. The response characteristic indicates that the sensor has a good stability and reversibility. Detections of toxic and flammable gases, such as ethanol, acetone and benzene were also carried out at a relative low temperature. The results indicate that such hierarchical Co3O4 microcrystal would be a potential material in the field of gas sensing.
基金Funded by the National Natural Science Foundation of China(No.61205062)the Scientific Research Foundation for Doctor of University(No.2019Y02)。
文摘A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.
基金supported by the Science and Technology Program of Hengshui City(No.2018011001Z)
文摘A new Zn(Ⅱ) coordination polymer, [Zn(4-PP)(1,4-BDC)?(H_2O)]_n(1, 4-PP = 4-(1 H-pyrazol-3-yl)pyridine, 1,4-H_2BDC = 1,4-benzenedicarboxylic acid), has been synthesized and structurally characterized by single-crystal X-ray diffraction as well as elemental analysis, IR spectra, XRPD and TG. Structural analysis reveals that Zn(Ⅱ) ions are bridged by COO-from 1,4-BDC^(2-)to form a binuclear structure as the second building units(SBUs). Zn_2 clusters can be clarified as 4-connected nodes, so the framework of 1 can be considered as a 2 D(44?62)-sql sheet. Fluorescence measurements show that 1 has highly selective and sensitive detection of Fe^(3+) in water medium.
基金Supported by the special Funds for Major State Basic Research Program of China (973 Program) (No. 2002CB312200) the 863 Hi-Tech. Research and Development Program of China (No. 2001AA413130, No.2002AA412110)the Key Technologies R&D Programme of China (No. 2001BA201A04).
文摘Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.
基金Funded by the National Natural Science Foundation of China(Nos.61377092 and 51303115)
文摘A new fi ber optic sensor based on the oxidation of 2,4-dichlorophenol(DCP) catalyzed by iron(II) phthalocyanine(Fe(II)Pc) was developed for the determination of DCP. The optical oxygen sensing fi lm containing fl uorescence indicator Ru(bpy)3Cl2 was used to detect the consumption of oxygen in solution. Moreover, a lock-in amplifier was used to determine the lifetime of the sensor head by detecting its phase delay change. The results reveal that the sensor has a linear detection range of 1.0×10^-6- 9.0×10^-5 mol/L and a response time of 5 min. The sensor also has high selectivity, good repeatability and stability. It can be used effectively to determine DCP concentration in real samples.
文摘SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
文摘In the present paper,the electron beam irradiation was used to improve gas sensing properties of ZnGa_2O_4 gas sensors.The effects of electron beam irradiation on the performance of ZnGa_2O_4 gas sensors were reported.Results show that the sensitivity of ZnGa_2O_4 gas sensors to various gases increased after electron beam irradiation,and the optimal working temperature decreased.The effect of irradiation dose and the reaction mechanism were discussed.
基金partially supported by the National Natural Foundation of China under Grant No.61176066 and No.61101031
文摘Abstract--Poly4-vinylphenol (P4VP)/multi-wan carbon nanotubes (MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature. The surface and section morphologies of the multi-layer films were observed by a scanning electron microscope (SEM). It is found that the resistance of the sensor increases when it is exposed to toluene vapor and the response has a good linearity with the concentration of toluene. The results show that the P4VP/MWNTs three-layer film sensors have better sensing properties compared with the two-layer film sensors. The related sensing mechanism is studied in detail.