To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal q...To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.展开更多
基金Supported by the National Natural Science Foundation of China(50975141,51005118)~~
文摘To better understand and know the roles of cooling/lubrication medium in the cutting process and expand their applicability,uncoated cemented carbide tools are used in high-speed turning Ti6Al4V.Dry,cold air,minimal quantity lubrication(MQL),cryogenic MQL,and ionized air as the cooling/lubrication conditions are studied.Experimental results show that at speed 120 m/min turning Ti6Al4V,the cutting force under ionized air is smallest under all lubricant conditions,and tool life is best,next is cryogenic MQL.MQL and cold air almost have the same effect,a little better than dry.Meanwhile the smallest surface roughness is also obtained under ionized air condition.Flank wear and crater wear are the dominant failure modes when high-speed turning Ti6Al4V by SEM analysis.Finally the conclusion is drawn that ionized air and cryogenic MQL have better cooling/lubrication effects and can effectively improve the tool life.
文摘微量润滑(minimum quantity lubrication,MQL)是提高战伤飞机钛合金结构损伤原位切割效率的有效技术方案。针对现有微量润滑装置无法适应战场环境的问题,开发了可用于战伤抢修的微量润滑集成箱,实现了纯气动的微小流量发生、调整和显示功能。通过钛合金切削润滑对比试验表明,在供气压力0.3 MPa、用油量80 m L/h,用水量200 m L/h时,润湿范围不超过40 mm,刀具耐用度比干切削提高228%。