AIM: To investigate apparent diffusion coefficient (ADC) values as an indication of reconditioning of acute hepatic injury (AHI) after allogeneic mononuclear bone marrow cell (MBMC) transplantation. METHODS: T...AIM: To investigate apparent diffusion coefficient (ADC) values as an indication of reconditioning of acute hepatic injury (AHI) after allogeneic mononuclear bone marrow cell (MBMC) transplantation. METHODS: Three groups were used in our study: a cell transplantation group (n = 21), transplantation control group (n = 21) and normal control group (n = 10). AHI model rabbits in the cell transplantation group were injected with 5 mL of MBMC suspension at multiple sites in the liver and the transplantation controls were injected with 5 mL D-Hanks solution. At the end of the 1st, 2nd and 4th wk, 7 rabbits were randomly selected from the cell transplantation group and trans- plantation control group for magnetic resonance diffu- sion-weighted imaging (MR-DWI) and measurement of the mean ADC values of injured livers. After MR-DWI examination, the rabbits were sacrificed and the livers subjected to pathological examination. Ten healthy rab- bits from the normal control group were used for MR- DWI examination and measurement of the mean ADC value of normal liver. RESULTS: At all time points, the liver pathological scores from the cell transplantation group were significantly lower than those in the transplantation control group (27.14± 1.46 vs 69.29± 6.16, 22.29 ± 2.29 vs 57.00± 1.53, 19.00 ± 2.31 vs 51.86 ± 6.04, P = 0.000). The mean ADC values of the cell transplantation group were significantly higher than the transplantation con- trol group ((1.07± 0.07) ×10^-3 mm2/s vs (0.69 ± 0.05) ×10^-3 mm2/s, (1.41± 0.04) ×10^-3 mm2/s vs (0.84± 0.03) ×10^-3 mm2/s, (1.68 ± 0.04) ×10^-3 mm2/s vs (0.86± 0.04) ×10^-3 mm2/s, P = 0.000). The pathological scores of the cell transplantation group and transplantation control group gradually decreased. However, their mean ADC values gradually increased to near that of the normal control. At the end of the 1st wk, the mean ADC values of the cell transplantation group and transplantation control group were significantly lower than those of the normal control group [(1.07 ± 0.07) ×10^-3 mm2/s vs (± 0.03) ×10^-3 mm2/s, (0.69± 0.05) ×10^-3 mm2/s vs (1.76 ± 0.03) ×10^-3 mm2/s, P = 0.000]. At any 2 time points, the pathological scores and the mean ADC values of the cell transplantation group were significantly different (P = 0.000). At the end of the 1st wk, the pathological scores and the mean ADC values of the transplantation control group were significantly different from those at the end of the 2nd and 4th wk (P = 0.000). However, there was no significant difference between the 2nd and 4th wk (P = 0.073 and 0.473, respectively). The coefficient of correlation between the pathological score and the mean ADC value in the cell transplantation group was -0.883 (P = 0.000) and -0.762 (P = 0.000) in the transplantation control group. CONCLUSION: Tracking the longitudinally dynamic change in the mean ADC value of the AHI liver may reflect hepatic injury reconditioning after allogeneic MBMC transplantation.展开更多
Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, i...Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.展开更多
Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a pract...Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.展开更多
基金Supported by The National Natural Science Foundation of China,No. 30070235,No. 30470508 and No. 30870695The Natural Science Foundation of Hunan Province,No. 06JJ2008,07JJ6040
文摘AIM: To investigate apparent diffusion coefficient (ADC) values as an indication of reconditioning of acute hepatic injury (AHI) after allogeneic mononuclear bone marrow cell (MBMC) transplantation. METHODS: Three groups were used in our study: a cell transplantation group (n = 21), transplantation control group (n = 21) and normal control group (n = 10). AHI model rabbits in the cell transplantation group were injected with 5 mL of MBMC suspension at multiple sites in the liver and the transplantation controls were injected with 5 mL D-Hanks solution. At the end of the 1st, 2nd and 4th wk, 7 rabbits were randomly selected from the cell transplantation group and trans- plantation control group for magnetic resonance diffu- sion-weighted imaging (MR-DWI) and measurement of the mean ADC values of injured livers. After MR-DWI examination, the rabbits were sacrificed and the livers subjected to pathological examination. Ten healthy rab- bits from the normal control group were used for MR- DWI examination and measurement of the mean ADC value of normal liver. RESULTS: At all time points, the liver pathological scores from the cell transplantation group were significantly lower than those in the transplantation control group (27.14± 1.46 vs 69.29± 6.16, 22.29 ± 2.29 vs 57.00± 1.53, 19.00 ± 2.31 vs 51.86 ± 6.04, P = 0.000). The mean ADC values of the cell transplantation group were significantly higher than the transplantation con- trol group ((1.07± 0.07) ×10^-3 mm2/s vs (0.69 ± 0.05) ×10^-3 mm2/s, (1.41± 0.04) ×10^-3 mm2/s vs (0.84± 0.03) ×10^-3 mm2/s, (1.68 ± 0.04) ×10^-3 mm2/s vs (0.86± 0.04) ×10^-3 mm2/s, P = 0.000). The pathological scores of the cell transplantation group and transplantation control group gradually decreased. However, their mean ADC values gradually increased to near that of the normal control. At the end of the 1st wk, the mean ADC values of the cell transplantation group and transplantation control group were significantly lower than those of the normal control group [(1.07 ± 0.07) ×10^-3 mm2/s vs (± 0.03) ×10^-3 mm2/s, (0.69± 0.05) ×10^-3 mm2/s vs (1.76 ± 0.03) ×10^-3 mm2/s, P = 0.000]. At any 2 time points, the pathological scores and the mean ADC values of the cell transplantation group were significantly different (P = 0.000). At the end of the 1st wk, the pathological scores and the mean ADC values of the transplantation control group were significantly different from those at the end of the 2nd and 4th wk (P = 0.000). However, there was no significant difference between the 2nd and 4th wk (P = 0.073 and 0.473, respectively). The coefficient of correlation between the pathological score and the mean ADC value in the cell transplantation group was -0.883 (P = 0.000) and -0.762 (P = 0.000) in the transplantation control group. CONCLUSION: Tracking the longitudinally dynamic change in the mean ADC value of the AHI liver may reflect hepatic injury reconditioning after allogeneic MBMC transplantation.
文摘Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.
基金supported by the National Natural Science Foundation of China(No.61202169)the Tianjin Key Natural Science Foundation(No.13JCZDJC34600)+1 种基金the China Scholarship Council(CSC)Foundation(No.201308120010)the Training Plan of Tianjin University Innovation Team(No.TD12-5016)
文摘Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.