Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to compli- cated computing. In this paper, we explore an efficient method for brain surface reconstruction fr...Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to compli- cated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic reso- nance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is pro- posed foi" surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.展开更多
Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a pract...Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(No.61202169)
文摘Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to compli- cated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic reso- nance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is pro- posed foi" surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.
基金supported by the National Natural Science Foundation of China(No.61202169)the Tianjin Key Natural Science Foundation(No.13JCZDJC34600)+1 种基金the China Scholarship Council(CSC)Foundation(No.201308120010)the Training Plan of Tianjin University Innovation Team(No.TD12-5016)
文摘Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.