Objective: To detect the activity of tumor cells and tumor blood flow before and after the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbit models by using magnetic resonance diffusion-weighted imaging(M...Objective: To detect the activity of tumor cells and tumor blood flow before and after the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbit models by using magnetic resonance diffusion-weighted imaging(MR-DWI) and magnetic resonance perfusion weighted imaging(MR-PWI), and to evaluate the effectiveness and safety of the radiotherapy based on the changes in the MR-DWI and MR-PWI parameters at different treatment stages.Methods: A total of 56 rabbit models with implanted pulmonary VX-2 carcinoma were established, and then equally divided into treatment group and control group. MR-DWI and MR-PWI were separately performed using a Philips Acheiva 1.5T MRI machine(Philips, Netherland). MRI image processing was performed using special perfusion software and the WORKSPACE advanced workstation for MRI. MRDWI was applied for the observation of tumor signals and the measurement of apparent diffusion coefficient(ADC) values; whereas MR-PWI was used for the measurement of wash in rate(WIR), wash out rate(WOR), and maximum enhancement rate(MER). The radiation treatment was performed using Siemens PRIMUS linear accelerator. In the treatment group, the radiotherapy was performed 21 days later on a once weekly dosage of 1,000 c Gy to yield a total dosage of 5,000 c Gy.Results: The ADC parameters in the region of interest on DWI were as follows: on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values at the center and the edge of the lesions were 1.352 and 1.461 in the treatment group and control group(P〉0.05). During weeks 0-1 after treatment, the t values at the center and the edge of the lesions were 1.336 and 1.137(P〉0.05). During weeks 1-2, the t values were 1.731 and 1.736(P〈0.05). During weeks 2-3, the t values were 1.742 and 1.749(P〈0.05). During weeks 3-4, the t values were 2.050 and 2.127(P〈0.05). During weeks 4-5, the t values were 2.764 and 2.985(P〈0.05). The ADC values in the treatment group were significantly higher than in the control group. After the radiotherapy(5,000 c Gy), the tumors remarkably shrank, along with low signal on DWI, decreased signal on ADC map, and remarkably increased ADC values. As shown on PWI, on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values of the WIR, WOR, and MER at the center of the lesions were 1.05, 1.31, and 1.33 in the treatment group and control group(P〉0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.35, 1.07, and 1.51(P〉0.05). During weeks 0-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 1.821, 1.856, and 1.931(P〈0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.799, 2.016, and 2.137(P〈0.05). During weeks 1-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.574, 2.156, and 2.059(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 1.869, 2.058, and 2.057(P〈0.05). During weeks 2-3 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.461, 2.098, and 2.739(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.951, 2.625, and 2.154(P〈0.05). During weeks 3-4 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.584, 2.107, and 2.869(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.057, 2.637, and 2.951(P〈0.05). During weeks 4-5 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.894, 2.827, and 3.285(P〈0.05) and the t values of the WIR, WOR, andMER at the edge of the lesions were 3.45, 3.246, and 3.614(P〈0.05). After the radiotherapy(500 c Gy), the tumors shrank on the T1 WI, WIR, WOR, and MER; meanwhile, the PWI parameter gradually decreased and reached its minimum value.Conclusions: MR-DWI and MR-PWI can accurately and directly reflect the inactivation of tumor cells and the tumor hemodynamics in rabbit models with implanted pulmonary VX-2 carcinoma, and thus provide theoretical evidences for judging the clinical effectiveness of radiotherapy for the squamous cell carcinoma of the lung.展开更多
文摘Objective: To detect the activity of tumor cells and tumor blood flow before and after the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbit models by using magnetic resonance diffusion-weighted imaging(MR-DWI) and magnetic resonance perfusion weighted imaging(MR-PWI), and to evaluate the effectiveness and safety of the radiotherapy based on the changes in the MR-DWI and MR-PWI parameters at different treatment stages.Methods: A total of 56 rabbit models with implanted pulmonary VX-2 carcinoma were established, and then equally divided into treatment group and control group. MR-DWI and MR-PWI were separately performed using a Philips Acheiva 1.5T MRI machine(Philips, Netherland). MRI image processing was performed using special perfusion software and the WORKSPACE advanced workstation for MRI. MRDWI was applied for the observation of tumor signals and the measurement of apparent diffusion coefficient(ADC) values; whereas MR-PWI was used for the measurement of wash in rate(WIR), wash out rate(WOR), and maximum enhancement rate(MER). The radiation treatment was performed using Siemens PRIMUS linear accelerator. In the treatment group, the radiotherapy was performed 21 days later on a once weekly dosage of 1,000 c Gy to yield a total dosage of 5,000 c Gy.Results: The ADC parameters in the region of interest on DWI were as follows: on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values at the center and the edge of the lesions were 1.352 and 1.461 in the treatment group and control group(P〉0.05). During weeks 0-1 after treatment, the t values at the center and the edge of the lesions were 1.336 and 1.137(P〉0.05). During weeks 1-2, the t values were 1.731 and 1.736(P〈0.05). During weeks 2-3, the t values were 1.742 and 1.749(P〈0.05). During weeks 3-4, the t values were 2.050 and 2.127(P〈0.05). During weeks 4-5, the t values were 2.764 and 2.985(P〈0.05). The ADC values in the treatment group were significantly higher than in the control group. After the radiotherapy(5,000 c Gy), the tumors remarkably shrank, along with low signal on DWI, decreased signal on ADC map, and remarkably increased ADC values. As shown on PWI, on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values of the WIR, WOR, and MER at the center of the lesions were 1.05, 1.31, and 1.33 in the treatment group and control group(P〉0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.35, 1.07, and 1.51(P〉0.05). During weeks 0-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 1.821, 1.856, and 1.931(P〈0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.799, 2.016, and 2.137(P〈0.05). During weeks 1-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.574, 2.156, and 2.059(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 1.869, 2.058, and 2.057(P〈0.05). During weeks 2-3 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.461, 2.098, and 2.739(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.951, 2.625, and 2.154(P〈0.05). During weeks 3-4 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.584, 2.107, and 2.869(P〈0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.057, 2.637, and 2.951(P〈0.05). During weeks 4-5 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.894, 2.827, and 3.285(P〈0.05) and the t values of the WIR, WOR, andMER at the edge of the lesions were 3.45, 3.246, and 3.614(P〈0.05). After the radiotherapy(500 c Gy), the tumors shrank on the T1 WI, WIR, WOR, and MER; meanwhile, the PWI parameter gradually decreased and reached its minimum value.Conclusions: MR-DWI and MR-PWI can accurately and directly reflect the inactivation of tumor cells and the tumor hemodynamics in rabbit models with implanted pulmonary VX-2 carcinoma, and thus provide theoretical evidences for judging the clinical effectiveness of radiotherapy for the squamous cell carcinoma of the lung.