期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Completed attention convolutional neural network for MRI image segmentation
1
作者 ZHANG Zhong LV Shijie +1 位作者 LIU Shuang XIAO Baihua 《High Technology Letters》 EI CAS 2022年第3期247-251,共5页
Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single ... Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single scale,resulting in incomplete attention learning.A novel method named completed attention convolutional neural network(CACNN) is proposed for MRI image segmentation.Specifically,the channel-wise attention block(CWAB) and the pixel-wise attention block(PWAB) are designed to learn attention weights from the aspects of channel and pixel levels.As a result,completed attention weights are obtained,which is beneficial to discriminative feature learning.The method is verified on two widely used datasets(HVSMR and MRBrainS),and the experimental results demonstrate that the proposed method achieves better results than the state-of-theart methods. 展开更多
关键词 magnetic resonance imaging(mri)image segmentation completed attention convolutional neural network(CACNN)
下载PDF
MRI image segmentation based on fast kernel clustering analysis
2
作者 Liang LIAO Yanning ZHANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期363-373,共11页
Kernel-based clustering is supposed to provide a better analysis tool for pattern classification,which implicitly maps input samples to a highdimensional space for improving pattern separability.For this implicit spac... Kernel-based clustering is supposed to provide a better analysis tool for pattern classification,which implicitly maps input samples to a highdimensional space for improving pattern separability.For this implicit space map,the kernel trick is believed to elegantly tackle the problem of“curse of dimensionality”,which has actually been more challenging for kernel-based clustering in terms of computational complexity and classification accuracy,which traditional kernelized algorithms cannot effectively deal with.In this paper,we propose a novel kernel clustering algorithm,called KFCM-III,for this problem by replacing the traditional isotropic Gaussian kernel with the anisotropic kernel formulated by Mahalanobis distance.Moreover,a reduced-set represented kernelized center has been employed for reducing the computational complexity of KFCM-I algorithm and circumventing the model deficiency of KFCM-II algorithm.The proposed KFCMIII has been evaluated for segmenting magnetic resonance imaging(MRI)images.For this task,an image intensity inhomogeneity correction is employed during image segmentation process.With a scheme called preclassification,the proposed intensity correction scheme could further speed up image segmentation.The experimental results on public image data show the superiorities of KFCM-III. 展开更多
关键词 kernel-based clustering dimensionality reduction speeding-up scheme magnetic resonance imaging(mri)image segmentation intensity inhomogeneity correction
原文传递
A Survey of MRI-Based Brain Tumor Segmentation Methods 被引量:13
3
作者 Jin Liu Min Li +3 位作者 Jianxin Wang Fangxiang Wu Tianming Liu Yi Pan 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第6期578-595,共18页
Brain tumor segmentation aims to separate the different tumor tissues such as active cells, necrotic core,and edema from normal brain tissues of White Matter(WM), Gray Matter(GM), and Cerebrospinal Fluid(CSF). M... Brain tumor segmentation aims to separate the different tumor tissues such as active cells, necrotic core,and edema from normal brain tissues of White Matter(WM), Gray Matter(GM), and Cerebrospinal Fluid(CSF). MRIbased brain tumor segmentation studies are attracting more and more attention in recent years due to non-invasive imaging and good soft tissue contrast of Magnetic Resonance Imaging(MRI) images. With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting brain tumor are becoming more and more mature and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for MRI-based brain tumor segmentation methods. Firstly, a brief introduction to brain tumors and imaging modalities of brain tumors is given. Then, the preprocessing operations and the state of the art methods of MRI-based brain tumor segmentation are introduced. Moreover, the evaluation and validation of the results of MRI-based brain tumor segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for MRI-based brain tumor segmentation methods. 展开更多
关键词 brain tumor Magnetic Resonance Imaging(mri segmentation
原文传递
MINIMUM ATTRIBUTE CO-REDUCTION ALGORITHM BASED ON MULTILEVEL EVOLUTIONARY TREE WITH SELF-ADAPTIVE SUBPOPULATIONS
4
作者 丁卫平 王建东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期175-184,共10页
Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient mi... Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results. 展开更多
关键词 minimum attribute reduction self-adaptive subpopulation multilevel evolutionary tree interacting decision variable magnetic resonance image(mri)segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部