期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Co-seismic deformation for the 2015 M_(W)7.8 Gorkha earthquake(Nepal)using near-field GPS data
1
作者 Jing Xiong Chao Chen +2 位作者 Jiaming Cao Junxiang Wang Xingbo Liu 《Geodesy and Geodynamics》 EI CSCD 2023年第5期419-430,共12页
Seasonal variations and common mode errors affect the precision of the Global Positioning System(GPS)time series.In this paper,we explore to improve the precision of coordinate time series,thereby providing a better d... Seasonal variations and common mode errors affect the precision of the Global Positioning System(GPS)time series.In this paper,we explore to improve the precision of coordinate time series,thereby providing a better detection of weak or transient deformation signals,particularly co-seismic signals.Based on 97 GPS stations,including the campaign and continuous GPS stations in Nepal and southern Tibet,we first consider seasonal variations and common errors,then obtain co-seismic deformation of the 2015 Gorkha earthquake in Nepal and southern Tibet.Our co-seismic rupture model is characterized by a shallow ramp and a deeper detachment fault,in agreement with the relocated aftershock sequence.Our results indicate that the earthquake rupture is mainly distributed in the upper-crustal fault,and the maximum slip is up to 8.0 m at~15.0 km depth located in the approximate-80 km east of the epicenter.The average slip is more than 5 m,and the total modelled magnitude is M_(W)7.84,consistent with the observed seismic moment.Our rupture model for the 2015 Gorkha earthquake suggests that the rupture zone is not only in the upper crustal Main Himalayan Thrust(MHT),but also spreads to the northern segment of the MHT. 展开更多
关键词 GPS time series Co-seismic deformation Nepal earthquake
下载PDF
2020年西藏定日M_(W)5.6地震震源参数估计和应力触发研究
2
作者 李琦 李承涛 +4 位作者 赵斌 黄勇 万永革 谭凯 董晴 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第1期172-188,共17页
2020年3月20日青藏高原西南缘定日县发生M_(W)5.6地震,距2015年尼泊尔M_(W)7.9地震~250 km.尼泊尔地震,尤其是震后余滑是否触发了此次定日地震还有待研究.本文联合合成孔径雷达和区域地震波资料研究定日地震的破裂特征.首先利用近场形... 2020年3月20日青藏高原西南缘定日县发生M_(W)5.6地震,距2015年尼泊尔M_(W)7.9地震~250 km.尼泊尔地震,尤其是震后余滑是否触发了此次定日地震还有待研究.本文联合合成孔径雷达和区域地震波资料研究定日地震的破裂特征.首先利用近场形变和宽频带地震波资料,通过贝叶斯自举优化算法揭示定日地震的均匀滑动模型;然后在此基础上构建断层几何模型并反演震源滑动分布.研究发现定日地震的发震断层走向~334°,倾角~51°.破裂主要集中在约2.0~5.5 km深度范围内.破裂范围~5.6 km×4.4 km,释放总的地震矩~3.33×10^(17)N·m.最大滑动量~1.27 m,发生在3.786 km深度.破裂以正断滑动为主兼少许右旋走滑分量,同区域历史地震表现出相似的破裂机制,表明印度板块向北东方向挤压欧亚板块,在藏南地区产生了近东西向的张应力.库仑应力变化研究表明,尼泊尔M_(W)7.9地震主余震和定日地区四次历史地震共同触发了2020年定日M_(W)5.6地震,其中尼泊尔地震震后2年的余滑引起的库仑应力变化占库仑应力增加总量的~40%,震后余滑在未来地震危险性评估中发挥的作用不容忽视. 展开更多
关键词 青藏高原 定日M_(W)5.6地震 合成孔径雷达形变 滑动分布 尼泊尔M_(W)7.9地震 库仑应力变化
下载PDF
Preliminary analysis on characteristics of coseismic deformation associated with M_S=8.1 western Kunlunshan Pass earthquake in 2001 被引量:34
3
作者 单新建 柳稼航 马超 《地震学报》 CSCD 北大核心 2004年第5期474-480,共7页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 合成孔径雷达干涉技术 昆仑山口西8.1级地震 同震形变场
下载PDF
粘性地壳环境下余滑的二次触发引起的区域应力场扰动及影响
4
作者 冯万鹏 戚永浩 张智超 《大地构造与成矿学》 EI CAS CSCD 北大核心 2024年第3期395-409,共15页
随着现代观测技术的发展,强震发生后时间相依的余滑过程已经被广泛观测到。在粘性地壳环境下,余滑进一步调整区域应力场,进而控制余震等一系列地质过程。2015年MW 7.8尼泊尔地震及其MW 7.3余震是南喜马拉雅造山带近年来最大的构造事件,... 随着现代观测技术的发展,强震发生后时间相依的余滑过程已经被广泛观测到。在粘性地壳环境下,余滑进一步调整区域应力场,进而控制余震等一系列地质过程。2015年MW 7.8尼泊尔地震及其MW 7.3余震是南喜马拉雅造山带近年来最大的构造事件,显著改造了当地的地形地貌,并扰动了当地应力场分布。2015年地震后,藏南发生了一系列M>5的正断层地震,甚至在距离主震453 km(震中以东)的多庆错湖出现了湖水干涸的异常事件。后续区域地质过程是否与2015年地震相关有待开展进一步研究。尼泊尔地震的震后形变被现代空间对地观测技术(GNSS和InSAR)所捕获,揭示地震断层后缘发生了显著的余滑过程。本文基于层状粘性地球模型,开展了同震、余滑及其关联的粘弹松弛的形变历史数值模拟。结果显示,同震静态应力触发并不能解释所有当地正断层地震的发生,但如果考虑余滑过程激发的下地壳粘弹性松弛效应,可以找到正触发关系。同时,震后余滑的粘弹性松弛过程对多庆错盆地形成东西向扩展应力,促进了当地裂隙的东西向扩展。考虑到该现象出现的时间,可以进一步确认余滑过程在震后对当地应力场的控制作用。值得指出的是,假设当地弹性层厚度为20 km、下地壳的粘性为1018 Pa·s的地壳模型,联合考虑余滑可以较好复现28°N附近GPS台站位置上的震后地表形变,为当地下地壳粘性下限提供约束。本次研究结果显示在强震次生灾害的评估中,来自余滑以及粘性地壳的影响不容忽视。 展开更多
关键词 余滑 粘弹释放 GNSS 尼泊尔地震 数值模拟
下载PDF
Damage characteristics and seismic capacity of buildings during Nepal M_s 8.1 earthquake 被引量:11
5
作者 Sun Baitao Yan Peilei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第3期571-578,共8页
The extensive damage to buildings caused by the Nepal Ms8.1 earthquake has attracted much attention by the international community.Afterthe preliminary scientific investigations on the different affected areas inNepal... The extensive damage to buildings caused by the Nepal Ms8.1 earthquake has attracted much attention by the international community.Afterthe preliminary scientific investigations on the different affected areas inNepal,the construction and damage characteristics of five different types of buildings commonly existing in Nepal were discussed and the reasons of their disaster performance were analyzed.Types of buildings investigated include reinforced concrete(RC) frame structures,rubble structures,brick-wood structures,raw soil structures,and brick-wood structures of historic buildings.In addition,the weak links of the seismic design were pointed out,which was very important for the post-earthquake reconstruction and recovery,and gave a preliminary explanations for the damage experienced. 展开更多
关键词 Nepal earthquake seismic damage of building seismi
下载PDF
Preliminary analysis on characteristics of coseismic deformation associated with MS=8.1 western Kunlunshan Pass earthquake in 2001 被引量:11
6
作者 SHAN Xin-jian(单新建) +3 位作者 LIU Jia-hang(柳稼航) MA Chao(马超) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第5期526-533,共8页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 INSAR M_S=8.1 western Kunlunshan Pass earthquake coseismic deformation
下载PDF
Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal 被引量:7
7
作者 Amar Deep Regmi Megh Raj Dhital +2 位作者 ZHANG Jian-qiang SU Li-jun CHEN Xiao-qing 《Journal of Mountain Science》 SCIE CSCD 2016年第11期1941-1957,共17页
Nepal was hit by a 7.8 magnitude earthquake on 25^(th) April,2015.The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal.We have developed a landslide susceptibility... Nepal was hit by a 7.8 magnitude earthquake on 25^(th) April,2015.The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal.We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork,using bivariate statistical model with different landslide causative factors.From the investigation,it is observed that most of the coseismic landslides are independent of previous landslides.Out of 3,716 mapped landslides,we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model.A total of 11 different landslide-influencing parameters were considered.These include slope gradient,slope aspect,plan curvature,elevation,relative relief,Peak Ground Acceleration(PGA),distance from epicenters of the mainshock and major aftershocks,lithology,distance of the landslide from the fault,fold,and drainage line.The success rate of 87.66% and the prediction rate of86.87% indicate that the model is in good agreement between the developed susceptibility map and theexisting landslides data.PGA,lithology,slope angle and elevation have played a major role in triggering the coseismic mass movements.This susceptibility map can be used for relocating the people in the affected regions as well as for future land development. 展开更多
关键词 earthquake HIMALAYA Coseismic landslide SUSCEPTIBILITY bivariate statistical model Nepal
下载PDF
Gravity variation before Kunlun mountain pass western M_s=8.1 earthquake 被引量:2
8
作者 祝意青 王双绪 +3 位作者 江在森 朱桂芝 李辉 张永志 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期304-311,共8页
The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute... The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000. The results show that: 1) Ms=8.1 earthquake in Kulun mountain pass western occurred in the gravity variation high gradient near gravit/s high negative variation; 2) The main tectonic deformation and energy accumulation before Ms=8.1 earthquake are distributed at south side of the epicenter; 3) The range of gravity's high negative variation at east of the Ms=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation; 4) Gravity variation distribution in high negative value region is just consistent with the second shear strain's high value region of strain field obtained from GPS observation. 展开更多
关键词 absolute gravity relative gravity Ms=8.1 earthquake tectonic deformation
下载PDF
Multiplicity of solutions to geophysical inversion reflected by rupture slip distribution of the 2015 Nepal earthquake 被引量:2
9
作者 Kai Tan Caihong Zhang +5 位作者 Bin Zhao Qi Wang Ruilin Du Rui Zhang Xuejun Qiao Yong Huang 《Geodesy and Geodynamics》 2017年第1期59-69,共11页
The equivalence of geophysical fields, the finiteness of measurements and the measurement errors make the result of geophysical inversion non-unique. For example, the measurements and inversion method used, the priori... The equivalence of geophysical fields, the finiteness of measurements and the measurement errors make the result of geophysical inversion non-unique. For example, the measurements and inversion method used, the priori rupture model determined and the slip distribution smoothing factor selected will have significant influences on the earthquake rupture slip distribution. Using different data and methods, different authors have given different rupture slip distribution models of the 2015 Mw7.9 Nepal earth- quake, with the maximum slip ranging from 3.0 m to 6.8 m. In this paper, geometry parameters of the single rectangular fault model in elastic half-space were inferred constraining with the Global Posi- tioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) coseismic deformations and bounding the slip with approximate average value; and then, the single rectangular fault was divided into multiple sub-faults, and the final slip smoothing factor, the final slip distribution and the maximum slip were determined with the misfit-roughness tradeoff curve, the cross-validation sum of squares (CVSS) and the third-party observation data or indexes being comprehensively taken into account. The results show that, the rupture of the Nepal earthquake extended by over 100 km east by south. The maximum slip of the earthquake was about 6.5-6.7 m, and most of the slip is confined at depths of 8 -20 kin, consistent with the depth distribution of aftershocks. The method for reducing the multiplicity of solutions to rupture slip distribution in this paper was ever used in inversion of rupture slip distri- bution for the 2008 Wenchuan and 2013 Lushan earthquakes, and the third-party measurement - surface dislocation has very large effect on reducing the multiplicity of solutions to inversion of the Wenchuan earthquake. Other priori information or indicators, such as fault strike, dip, earthquake magnitude, seismic activity, Coulomb stress, and seismic period, can be used for beneficial validation of and comparison with inversion results. 展开更多
关键词 Multiplicity of inversion solutions Nepal earthquake Coseismic deformation Rupture slip distribution
下载PDF
Decomposing InSAR LOS displacement into co-seismic dislocation with a linear in-terpolation model: A case study of the Kunlun Mountain M_s=8.1 earthquake 被引量:2
10
作者 马超 单新建 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第1期100-107,共8页
It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR ... It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR technique. Having tried to fit the firsthand field investigation data with a least squares model and obtained a preliminary result, this paper, based on the previous field data and the InSAR data, presents a linear cubic interpolation model which well fits the feature of earthquake fracture zone. This model inherits the precision of investigation data; moreover make use of some advantages of the InSAR technique, such as quasi-real time observation, continuous recording and all-weather measurement. Accordingly, by means of the model this paper presents a method to decompose the InSAR slant range co-seismic displacement (i.e. LOS change) into horizontal and vertical displacement components. Approaching the real motion step by step, finally a serial of curves representing the co-seismic horizontal and vertical displacement component along the main earthquake fracture zone are approximately obtained. 展开更多
关键词 InSAR (Interferometry Synthetic Aperture Radar) least squares fiting linear interpolation LOS co-seismic dislocation Kunlun Mountain Ms=8.1 earthquake
下载PDF
Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal(Gorkha)earthquake observed by superconducting gravimeters in Chinese mainland 被引量:5
11
作者 LeLin Xing ZiWei Liu +3 位作者 JianGang Jia ShuQing Wu ZhengSong Chen XiaoWei Niu 《Earth and Planetary Physics》 CSCD 2021年第2期141-148,共8页
Using data from five SGs at four stations in Chinese mainland,obvious permanent gravity changes caused by the 2015 MW7.8 Nepal(Gorkha)earthquake were detected.We analyzed the gravity effects from ground vertical defor... Using data from five SGs at four stations in Chinese mainland,obvious permanent gravity changes caused by the 2015 MW7.8 Nepal(Gorkha)earthquake were detected.We analyzed the gravity effects from ground vertical deformation(VD)using co-site continuous GPS(cGPS)data collocated at the Lijiang and the Wuhan station,and hydrological effects using GLDAS models and groundwater level records.After removing these effects,SG observations before and after the earthquake revealed obvious permanent gravity changes:−3.0μGal,7.3μGal and 8.0μGal at Lhasa,Lijiang and Wuhan station,respectively.We found that the gravity changes cannot be explained by the results of dislocation theory. 展开更多
关键词 the 2015 Nepal earthquake superconducting gravimeter coseismic gravity change
下载PDF
Ionospheric disturbances associated with the 2015 M7.8 Nepal earthquake 被引量:4
12
作者 Yiyan Zhou Jian Yang +3 位作者 Fuying Zhu Fanfan Su Liangchen Hu Wenbo Zhai 《Geodesy and Geodynamics》 2017年第4期221-228,共8页
Based on the total electron content (TEC) derived from Global Positioning System (GPS) observations of the Crustal Movement Observation Network of China (CMONOC) and the Global Ionosphere Map (GIM) from the Ce... Based on the total electron content (TEC) derived from Global Positioning System (GPS) observations of the Crustal Movement Observation Network of China (CMONOC) and the Global Ionosphere Map (GIM) from the Center for Orbit Determination in Europe (CODE), we detected and analyzed the ionospheric variations during the 2015 M7.8 Nepal earthquake (including the pre-earthquake ionospheric anomalies and coseismic ionospheric disturbances (CIDs) following the main shock). The analysis of vertical total electron content (VTEC) time series shows that the large-scale ionospheric anomalies appeared near the epicenter two days prior to the earthquake. Moreover, the pre-earthcluake ionospheric anomalies were also observed in the geomagnetically conjugated region. In view of solar-terrestrial environment, the pre-earthquake ionospheric anomalies could be associated with the Nepal earthquake. In addition, we also detected the CIDs through the high-frequency GPS observation stations. The CIDs had obvious oscillated waveforms with the peak-to-peak disturbance amplitudes of about I TECu and 0.4 TECu, which propagated approximately with the horizontal velocities of 877 ±75 m/s and 319 ± 30 m/s, respectively. The former is triggered directly by the acoustic waves which originated from the energy release of the earthquake near the epicenter, while the latter could be stimulated by the acoustic-gravity waves from the partial transformation of the acoustic waves. 展开更多
关键词 GPS TEC M7.8 Nepal earthquake Pre-earthquake ionospheric anomalies CID
下载PDF
Effect of Kunlun Ms 8.1 earthquake on crustal deformation in northeastern edge region of Qinghal-Tibet plateau 被引量:2
13
作者 Duxin Cui Qingliang Wang Wenping Wang 《Geodesy and Geodynamics》 2010年第1期34-41,共8页
Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these paramete... Seismic fault parameters can be inversed with Okada model based on deformation data before and after earthquakes in focal region and its adjacent area. Co-seismic displacements can be simulated by using these parameters,and then regional velocity field obtained by deducting the co-seismic displacements from the observed displacements by GPS method. We processed and analyzed the data in the northeastern edge region of the Qinghai-Tibet plateau observed during 2001 -2003 in two steps: firstly, the displacements generated by Kunlun MsS. 1 earthquake of 2001 in this region was simulated, and secondly, deducted the co-seismic displacements from it and obtained the horizontal crustal velocity field. The results reveal : 1 ) the effect of Kunlun Ms8.1 earthquake on crustal deformation in this region is significant; 2 )the velocity field obtained with this method is better than the original GPS velocity field in reflecting the status of regional crustal movement and strain. 展开更多
关键词 northeastern edge of the Qinghai-Tibet block co-seismic displacement GPS velocity field Kunlun Ms8.1 earthquake crustal movement
下载PDF
Estimation of the 2001 Kunlun earthquake fault slip from GPS coseismic data using Hori’s inverse method 被引量:1
14
作者 Honglin Jin Hui Wang 《Earthquake Science》 CSCD 2009年第6期609-614,共6页
The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inve... The Hori's inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 Ms8.1 Kunlun earthquake based on GPS survey results. The inversion result shows that the six sliding models can be constrained by the coseismic GPS data. The established slips mainly concentrated along the eastern segment of the fault rupture, and the maximum magnitude is about 7 m. Slip on the eastern segment of the fault rupture represents as purely left-lateral strike-slip. Slip on the western segment of the seismic rupture represents as mainly dip-stip with the maximum dip-slip about 1 m. Total predicted scalar seismic moment is 5.196× 10^2° N.m. Our results constrained by geodetic data are consistent with seismological results. 展开更多
关键词 Kunlun Ms8.1 earthquake coseismic GPS data fault slip inversion
下载PDF
Measuring ground deformations caused by 2015 Mw7.8 Nepal earthquake using high-rate GPS data 被引量:1
15
作者 Yong Huang Shaomin Yang +3 位作者 Xuejun Qiao Mu Lin Bin Zhao Kai Tan 《Geodesy and Geodynamics》 2017年第4期285-291,共7页
The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) b... The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) by using relative kinematic positioning and derived dynamic ground motions caused by this large earthquake. The dynamic displacements time series clearly indicated the displacement amplitude of each station was related to the rupture directivity. The stations which located in the di- rection of rupture propagation had larger displacement amplitudes than others. Also dynamic ground displacement exceeding 5 cm was detected by the GPS station that was 2000 km away from the epicenter. Permanent coseismic displacements were resolved from the near-field high-rate GPS stations with wavelet decomposition-reconstruction method and P-wave arrivals were also detected with S transform method. The results of this study can be used for earthquake rupture process and Earthquake Early Warning studies. 展开更多
关键词 High-rate GPS Mw7.8 Nepal earthquake Dynamic ground motion Permanent coseismic displacements P-wave arrival detection
下载PDF
Co-seismic deformation and gravity changes of the 2011 India-Nepal and Myanmar earthquakes 被引量:1
16
作者 Liu Chengli Zheng Yong +1 位作者 Shan Bin Xiong Xiong 《Geodesy and Geodynamics》 2012年第1期1-7,共7页
Co-seismic deformation and gravity field changes caused by the 2011 Mw6. 8 Myanmar and Mw6. 9 India-Nepal earthquakes are calculated with a finite-element model and an average-slip model, respectively, based on the mu... Co-seismic deformation and gravity field changes caused by the 2011 Mw6. 8 Myanmar and Mw6. 9 India-Nepal earthquakes are calculated with a finite-element model and an average-slip model, respectively, based on the multi-layered elastic half-space dislocation theory. The calculated maximum horizontal displace- ment of the Myanmar earthquake is 36 era, which is larger than the value of 9. 5 cm for the India-Nepal earth- quake. This difference is attributed to their different focal depths and our use of different models. Except cer- tain differences in the near field, both models give similar deformation and gravity results for the Myanmar event. 展开更多
关键词 India-Nepal earthquake Myanmar earthquake average-slip model finite-element rupture model gravity
下载PDF
Viscoelastic relaxation of the upper mantle and afterslip following the 2014 M_(W)8.1 Iquique earthquake 被引量:1
17
作者 Zhiping Hu Yan Hu Segun Steven Bodunde 《Earthquake Research Advances》 CSCD 2021年第1期34-40,共7页
An improved understanding of postseismic crustal deformation following large subduction earthquakes may help to better understand the rheological properties of upper mantle and the slip behavior of subduction interfac... An improved understanding of postseismic crustal deformation following large subduction earthquakes may help to better understand the rheological properties of upper mantle and the slip behavior of subduction interface.Here we construct a three-dimensional viscoelastic finite element model to study the postseismic deformation of the 2014 M_(W)8.1 Iquique,Chile earthquake.Elastic units in the model include the subducting slab,continental and oceanic lithospheres.Rheological units include the mantle wedge,the oceanic asthenosphere and upper mantle.We use a 2 km thick weak shear zone attached to the subduction fault to simulate the time-dependent stress-driven afterslip.The viscoelastic relaxation in the rheological units is represented by the Burgers rheology.We carry out grid-searches on the shear zone viscosity,thickness and viscosity of the asthenosphere,and they are determined to be 10^(17)Pa s,110 km and 2×10^(18)Pa s,respectively.The stress-driven afterlsip within the first two years is up to~47 cm and becomes negligible after two years(no more than 5 cm/yr).Our results suggest that a thin,low-viscosity oceanic asthenosphere together with a weak shear zone attached to the fault are required to better reproduce the observed postseismic deformation. 展开更多
关键词 2014 M_(W)8.1 Iquique earthquake Postseismic viscoelastic relaxation AFTERSLIP Finite element model Lithosphere geodynamics Upper mantle rheology
下载PDF
Investigation of Coulomb stress changes in south Tibet(central Himalayas) due to the 25th April 2015 M_W 7.8 Nepal earthquake using a Coulomb stress transfer model
18
作者 Xu Cheng Guojie Meng 《Earthquake Science》 CSCD 2016年第5期271-279,共9页
After Mw 7.8 Nepal earthquake occurred, the rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. We present the calculations of the coseismic stress changes that resulted from the ... After Mw 7.8 Nepal earthquake occurred, the rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. We present the calculations of the coseismic stress changes that resulted from the 25th April event using models of regional faults designed according to south Tibet-Nepal structure, and show that some indicative significant stress increases. We calculate static stress changes caused by the displacement of a fault on which dislocations happen and an earthquake occurs. A Mw 7.3 earthquake broke on 12 May at a distance of - 130 km SEE of the Mw 7.8 earthquake, whose focus roughly located on high Coulomb stress change (CSC) site. Aftershocks (first 15 days after the mainshock) are associated with stress increase zone caused by the main rupture. We set receiver faults with specified strikes, dips, and rakes, on which the stresses imparted by the source fault are resolved. Four group normal faults to the north of the Nepal earthquake seismogenic fault were set as receiver faults and variant results followed. We provide a discussion on Coulomb stress transfer for the seismogenic fault, which is useful to identify potential future rupture zones. 展开更多
关键词 Coulomb stress changes Elastic model Stress transfer earthquake risk Nepal earthquake
下载PDF
Continental dynamics and continental earthquakes
19
作者 张东宁 张国民 张培震 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第5期583-591,共9页
Two key research projects in geoscience field in China since the IUGG meeting in Birmingham in 1999, the project of East Asian Continental Geodynamics and the project of Mechanism and Prediction of Strong Continental ... Two key research projects in geoscience field in China since the IUGG meeting in Birmingham in 1999, the project of East Asian Continental Geodynamics and the project of Mechanism and Prediction of Strong Continental Earthquakes are introduced in this paper. Some details of two projects, such as their sub-projects, some initial research results published are also given here. Because of the large magnitude of the November 14, 2001 Kunlun Mountain Pass MS=8.1 earthquake, in the third part of this paper, some initial research results are reviewed for the after-shock monitoring and the multi-discipline field survey, the impact and disaster of this earthquake on the construction site of Qinghai-Xizang (Tibet) railway and some other infrastructure. 展开更多
关键词 GEODYNAMICS continental earthquake mechanism Kunlun Mountain Pass MS=8.1 earthquake
下载PDF
Horizontal crustal movement in Chinese mainland before and after the great Kunlun Mountain M=8.1 earthquake in 2001
20
作者 顾国华 张晶 王武星 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第6期676-685,共10页
The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthq... The continuous GPS observation at the fiducial stations in the Crustal Movement Observation Network of China (CMONOC) recorded the crustal movement of Chinese mainland before and after the great Kunlun Mountain earthquake of M=8.1 on November 14, 2001, especially the horizontal crustal movement in the western part of China. Based on the datum defined by a group of stable stations with small mutual horizontal displacements for a few years, the time series of horizontal displacements at fiducial stations were obtained. Significant anomalous horizontal displacements had appeared at the fiducial stations in the western part of China since early November 2000 and several earthquakes with the magnitudes about 6.0 had occurred in Yunnan and Sichuan Provinces. The northward components of the horizontal displacement at the fiducial stations in west China had decreased signifi-cantly and even changed in the opposite sense since mid April 2001. After the earthquake, the northward dis-placements still decreased and there were significant westward displacements. The process of the crustal move-ment in the western part of Chinese mainland (in reference to east China) suggests that the main force source for this earthquake came from the northward pushing of the Indian plate. The great earthquake released a large amount of energy, as a result, the action applied by the Indian plate to Chinese mainland diminished significantly and after the great earthquake, the seismic activity in Chinese mainland decreased considerably until the end of 2002. 展开更多
关键词 crustal movement GPS earthquake prediction great Kunlun Mountain earthquake of M=8.1 time series
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部