Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There i...Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.展开更多
For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean...For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean-square-error(MSE) criterion, the optimization problem of joint transceiver design with transmitting power constraint and energy harvesting constraint is formulated. Next, by semidefinite relaxation(SDR) and randomization method, the SDRbased scheme is proposed. In order to reduce the complexity, the closed-form scheme is presented with some simplified measures. Robust beamforming is then studied considering the practical condition. The simulation results such as MSE versus signal-noise-ratio(SNR), MSE versus the iteration number, well prove the performance of the proposed schemes for the system model.展开更多
In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likeliho...In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likelihood Estimator (MLE), the Square-Error Loss Function (BSE), the Entropy Loss Function (BEN) and the Composite LINEX Loss Function (BCL). The performance of these four methods was compared based on three criteria: the Mean Square Error (MSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). Using Monte Carlo simulation based on relevant samples, the comparisons in this study suggest that the Bayesian method is better than the maximum likelihood estimator with respect to the estimation of the parameter that offers the smallest values of MSE, AIC, and BIC. Confidence intervals were then assessed to test the performance of the methods by comparing the 95% CI and average lengths (AL) for all estimation methods, showing that the Bayesian methods still offer the best performance in terms of generating the smallest ALs.展开更多
文摘Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.
基金supported by the National Great Science Specif ic Project (Grants No. 2014ZX03002002-004)National Natural Science Foundation of China (Grants No. NSFC-61471067)
文摘For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean-square-error(MSE) criterion, the optimization problem of joint transceiver design with transmitting power constraint and energy harvesting constraint is formulated. Next, by semidefinite relaxation(SDR) and randomization method, the SDRbased scheme is proposed. In order to reduce the complexity, the closed-form scheme is presented with some simplified measures. Robust beamforming is then studied considering the practical condition. The simulation results such as MSE versus signal-noise-ratio(SNR), MSE versus the iteration number, well prove the performance of the proposed schemes for the system model.
文摘In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likelihood Estimator (MLE), the Square-Error Loss Function (BSE), the Entropy Loss Function (BEN) and the Composite LINEX Loss Function (BCL). The performance of these four methods was compared based on three criteria: the Mean Square Error (MSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). Using Monte Carlo simulation based on relevant samples, the comparisons in this study suggest that the Bayesian method is better than the maximum likelihood estimator with respect to the estimation of the parameter that offers the smallest values of MSE, AIC, and BIC. Confidence intervals were then assessed to test the performance of the methods by comparing the 95% CI and average lengths (AL) for all estimation methods, showing that the Bayesian methods still offer the best performance in terms of generating the smallest ALs.