期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进部分卷积的瑕疵布匹图像生成算法 被引量:2
1
作者 乐飞 宋亚林 李小艳 《计算机系统应用》 2022年第12期187-194,共8页
针对工业生产中布匹瑕疵自动化检测模型训练时缺少带瑕疵位置信息的瑕疵布匹图像数据集的问题,本文提出了一种以改进的部分卷积网络作为基本框架的带瑕疵位置信息的瑕疵布匹图像生成模型EC-PConv.该模型引入小尺寸瑕疵特征提取网络,将... 针对工业生产中布匹瑕疵自动化检测模型训练时缺少带瑕疵位置信息的瑕疵布匹图像数据集的问题,本文提出了一种以改进的部分卷积网络作为基本框架的带瑕疵位置信息的瑕疵布匹图像生成模型EC-PConv.该模型引入小尺寸瑕疵特征提取网络,将提取出的瑕疵纹理特征与空白mask拼接起来形成带有位置信息和瑕疵纹理特征的mask,然后以修复方式生成带有瑕疵位置信息的瑕疵布匹图像,另外,本文提出一种结合MSE损失的混合损失函数以生成更加清晰的瑕疵纹理.实验结果表明,与最新的GAN生成模型相比,本文提出的生成模型的FID值降低了0.51;生成的瑕疵布匹图像在布匹瑕疵检测模型中查准率P和MAP值分别提高了0.118和0.106.实验结果表明,该方法在瑕疵布匹图像生成上比其他算法更稳定,能够生成更高质量的带瑕疵位置信息的瑕疵布匹图像,可较好地解决布匹瑕疵自动化检测模型缺少训练数据集的问题. 展开更多
关键词 机器视觉 部分卷积 图像生成 布匹瑕疵检测模型 mse损失
下载PDF
径向基函数神经网络分类器与CNN在癌细胞图像分类中的应用 被引量:1
2
作者 张凯凯 郭松林 毕晨琳 《电子测试》 2019年第22期66-67,76,共3页
本文提出一种新的用于对卷积神经网络提取的特征进行分类的分类器即径向基函数神经网络(rbfnn)分类器。其思想是利用卷积神经网络作为特征提取器,使用rbfnn对提取的特征进行分类。同时在训练时采取softmax分类器与rbfnn分类器同步训练... 本文提出一种新的用于对卷积神经网络提取的特征进行分类的分类器即径向基函数神经网络(rbfnn)分类器。其思想是利用卷积神经网络作为特征提取器,使用rbfnn对提取的特征进行分类。同时在训练时采取softmax分类器与rbfnn分类器同步训练的方式,其中rbfnn分类器将MSE(均方误差)损失作为监督信息,softmax分类器用交叉熵损失作为监督信息。优化后的模型优于[1]中的72.9%的准确率。 展开更多
关键词 卷积神经网络 径向基神经网络 图像识别 mse(均方误差)损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部