期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Mechanism study of Cu(Ⅱ) adsorption from acidic wastewater by ultrasonic-modified municipal solid waste incineration fly ash
1
作者 Shunda lin Yang Lu +3 位作者 Lin Zheng Ling Long Xuguang Jiang Jianhua Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期157-165,共9页
High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M... High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects. 展开更多
关键词 ULTRASOUND mswi fly ash Cu(Ⅱ) WASTEWATER ADSORPTION
下载PDF
MSWI Fly Ash Based Novel Solidification/Stabilization Matrices for Heavy Metals 被引量:2
2
作者 邓发庆 钱光人 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期955-960,共6页
The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as ba... The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes. 展开更多
关键词 mswi fly ash heavy metals chemical speciation fraction secure landfill SOLIDIFICATION/STABILIZATION
下载PDF
Effect of MSWI Fly Ash and Incineration Residues on Cement Performances 被引量:1
3
作者 李相国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期312-315,共4页
The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydra... The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydration mechanism and leaching toxicity of the hardened cement paste mixing with MSWI fly ash and incineration residues were investigated. The experimental results indicated that the active constituents (CaO+Al2O3+Fe2O3) in MSWI fly ash were higher than those in incineration residues. Therefore the activity ratio of MSWI fly ash was 43.58%, twice as much as that of incineration residues. Meanwhile, the hydration of cement was delayed by mixing with MSWI fly ash and incineration residues, which also reduced the cement strength markedly. By adding with exceeding 20% MSWI fly ash, the specimens expanded and microcracks appeared. The leaching toxicities of cement pasted mixed with MSWI fly ash and incineration residues were lower than the Chinese national standard. Accordingly the cement mixed by MSWI fly ash and incineration residues can be considered as the environment-friendly materials. 展开更多
关键词 mswi fly ash incineration residues activity ratio leaching toxicity
下载PDF
Study on Removal of Pb and Hg from MSWI Fly Ash by Aspergillus niger Leaching
4
作者 Zhao GAO Huijun LI +3 位作者 Li JIAN Shaobai WEN Juyi GAO Fangwei GAO 《Agricultural Biotechnology》 CAS 2018年第5期238-241,245,共5页
Fly ash from a municipal solid waste incineration plant in Haikou was taken as the research object. The biological toxicity of its leachate was determined by luminescent bacteria method. The leaching toxicity of the l... Fly ash from a municipal solid waste incineration plant in Haikou was taken as the research object. The biological toxicity of its leachate was determined by luminescent bacteria method. The leaching toxicity of the leachate was determined by atomic fluorescence spectrometry. The results showed that the leaching with Aspergillus niger had good removal effect on As and Hg, and the leached fly ash and leachate could meet the safe discharge standard. 37 ℃ was the best temperature for A. niger leaching. The concentrations of As and Hg in fly ash leachate were reduced to 0.438 and 0.053 g/L, respectively after 5 d of leaching by A. niger at 37 ℃. The luminous intensity of leachate increased with the increase of the number of days. Therefore, the leaching with A. niger can effectively remove As and Hg in fly ash from municipal solid waste incineration, and the leachate can also meet the safe discharge standard. 展开更多
关键词 mswi fly ash Heavy metals Aspergillus niger BIOLEACHING
下载PDF
Utilization of municipal solid waste incineration fly ash in lightweight aggregates 被引量:5
5
作者 谭文发 王里奥 +4 位作者 黄川 刘元元 J.E.Green D.Newport T.Green 《Journal of Central South University》 SCIE EI CAS 2012年第3期835-841,共7页
Washing pre-treatrnent of municipal solid waste incineration (MSWI) fly ash blended with shale and sludge was utilized in the manufacture of light-weight aggregates and processed to form ceramic pellets. A formula u... Washing pre-treatrnent of municipal solid waste incineration (MSWI) fly ash blended with shale and sludge was utilized in the manufacture of light-weight aggregates and processed to form ceramic pellets. A formula uniform design was performed to arrange the mixture ratio of the materials. The optimal mixture ratio of the materials was determined by measuring the bulk density, granule strength, and 1 h water absorption of the pellets. It is shown that the optimal mixture ratios of materials, MSWI fly ash, shale, and sludge, are 23.16%, 62.58%, and 14.25% (mass fraction), respectively. The performance testing indicators of light-weight aggregates are obtained under the optimum mixture ratio: bulk density of 613 kg/m3, granule strength of 821N, and 1 h water absorption of 11.6%, meeting 700 grade light-aggregate of GB/T 17431.2--1998 standard. The results suggest that utilization of MSWI fly ash in light-weight aggregates is an effective method and a potential means to create much more values. 展开更多
关键词 mswi fly ash pre-treatment trefoil rotary kiln heavy metal light-weight aggregates
下载PDF
The Cement Solidification of Municipal Solid Waste Incineration Fly Ash 被引量:2
6
作者 侯浩波 贺杏华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期137-140,共4页
The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the l... The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substhtaion, deposition or adsorption mechanisms. 展开更多
关键词 mswi fly ash heavy metals leaching toxicity CEMENT SOLIDIFICATION
下载PDF
Mechanism of high concentration phosphorus wastewater treated by municipal solid waste incineration fly ash 被引量:4
7
作者 钟山 高慧 +1 位作者 邝薇 刘元元 《Journal of Central South University》 SCIE EI CAS 2014年第5期1982-1988,共7页
The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier tra... The mechanism of removing phosphate by MSWI(municipal solid waste incineration)fly ash was investigated by SEM(scanning electron microscopy)with EDS(energy dispersion spectrum),XRD(X-ray diffraction),FT-IR(Fourier transform infrared spectroscopy),BET(specific surface area),and BJH(pore size distribution).The results indicate that the removal rate of phosphate(100 mg/L)in 50 mL phosphorus wastewater reaches at 99.9% as the dosage of MSWI fly ash being 0.9000 g under room temperature.The specific surface area of MSWI fly ash is less than 6.1 m2/g and the total pore volume is below 0.021 cm3/g,suggesting that the absorption capacity of calcite is too weak to play an important role in phosphate removal.SEM images show that drastic changes had taken place on its specific surface shape after reaction,and EDS tests indicate that some phosphate precipitates are formed and attached onto MSWI fly ash particles.Chemical precipitation is the main manner of phosphate removal and the main reaction is: 3Ca2++2 PO4 3-+xH2O→Ca3(PO4)2↓·xH2O.Besides,XRD tests show that the composition of MSWI fly ash is complex,but CaSO4 is likely to be the main source of Ca2+.The soluble heavy metals in MSWI fly ash are stabilized by phosphate. 展开更多
关键词 mswi (municipal solid waste incineration) fly ash phosphorus wastewater PHOSPHATE MECHANISM heavy metal
下载PDF
Preparation of glass–ceramics from high-chlorine MSWI fly ash by one-step process 被引量:2
8
作者 Shi-Zhen Zhao Xiao-Yan Zhang +3 位作者 Bo Liu Jun-Jie Zhang Han-Lin Shen Shen-Gen Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3316-3328,共13页
Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly as... Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly ash with high chloride content,have been developed from one-step process.MSWI fly ash and waste glass have been utilized as calcium and silicon sources,respectively.Glass-ceramics were successfully prepared by the one-step process.It is found that the increase in MSWI fly ash promotes the fracture of glass mesh(Si-O)and the generation of non-bridging oxygen,reducing the polymerization degree of glass network structure,which leads to the decrease in glass stability.The difference between glass transition temperature(T_(g)) and crystallization temperature(T_(c)) was narrowed,and crystallization activation energy of basic glass was reduced,which promoted crystallization.With lower crystallization activation energy(E=217.56 kJ·mol^(-1)) and high utilization rate of 50 wt% MSWI fly ash,the optimal glass-ceramics with spherical diopside,cuspidine and glass phase,excellent hardness of 7.97 GPa and bending resistance of 114.86 MPa are achieved.It is worth mentioning that most of the high content of chlorine in MSWI fly ash will evaporate during vitrification process;the residual chlorine as well as heavy metals can be present steadily in crystalline grains.Therefore,this study not only increases the attachment value of MSWI fly ash,but also eliminates the problems caused by high chlorine and heavy metals in MSWI fly ash. 展开更多
关键词 Municipal solid waste incinerated(mswi)fly ash Glass–ceramics Crystallization behavior Microstructure Properties CHLORINE
原文传递
Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb 被引量:3
9
作者 Yan SHAO Haobo HOU +2 位作者 Guangxing WANG Sha WAN Min ZHOU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第1期192-200,共9页
Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast fumace slag-based cementifious material was used to stabilize/solidify the fly ash at experimental level. The... Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast fumace slag-based cementifious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffrac- tion (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Contin- uous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/ solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C- S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure. 展开更多
关键词 municipal solid waste incineration mswi)fly ash blast furnace slag leaching behavior CR PB
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部