期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling
1
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor 被引量:6
2
作者 Zhi-Xing Gu Qing-Xian Zhang +4 位作者 Yi Gu Liang-Quan Ge Guo-Qiang Zeng Mu-Hao Zhang Bao-Jie Nie 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期84-100,共17页
To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo... To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors. 展开更多
关键词 LBE-cooled pool-type reactor Computational fluid dynamics multi-physics coupling code Safety analysis code VERIFICATION
下载PDF
Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor 被引量:2
3
作者 Xiao Luo Chi Wang +4 位作者 Ze-Ren Zou Lian-Kai Cao Shuai Wang Zhao Chen Hong-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第2期40-52,共13页
In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and t... In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained. 展开更多
关键词 multi-physics and multi-scale coupling method User-defined functions Dynamic link library Thermal stratification Lead-cooled fast reactor
下载PDF
Minimal Realization of Linear Graph Models for Multi-physics Systems
4
作者 Clarence W.DE SILVA 《Instrumentation》 2019年第4期72-84,共13页
An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.Th... An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.The present paper concerns the use of linear graphs(LGs)to generate a minimal model for a multi-physics system.A state-space model has to be a minimal realization.Specifically,the number of state variables in the model should be the minimum number that can completely represent the dynamic state of the system.This choice is not straightforward.Initially,state variables are assigned to all the energy-storage elements of the system.However,some of the energy storage elements may not be independent,and then some of the chosen state variables will be redundant.An approach is presented in the paper,with illustrative examples in the mixed fluid-mechanical domains,to illustrate a way to recognize dependent energy storage elements and thereby obtain a minimal state-space model.System analysis in the frequency domain is known to be more convenient than in the time domain,mainly because the relevant operations are algebraic rather than differential.For achieving this objective,the state space model has to be converted into a transfer function.The direct way is to first convert the state-space model into the input-output differential equation,and then substitute the time derivative by the Laplace variable.This approach is shown in the paper.The same result can be obtained through the transfer function linear graph(TF LG)of the system.In a multi-physics system,first the physical domains have to be converted into an equivalent single domain(preferably,the output domain of the system),when using the method of TFLG.This procedure is illustrated as well,in the present paper. 展开更多
关键词 multi-physics Modelling Mechatronic Systems Linear Graphs Dependent Energy Storage Elements Redundant State Variables Minimal State-space Realization Domain Conversion Equivalent Models Frequency-domain Model
下载PDF
Mechatronic Modeling and Domain Transformation of Multi-physics Systems
5
作者 Clarence W.DE SILVA 《Instrumentation》 2021年第1期14-28,共15页
The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in th... The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in the multi-physics sense,but involves other physical domains such as fluid and thermal.This paper summarizes the mechatronic approach to modeling.Linear graphs facilitate the development of state-space models of mechatronic systems,through this approach.The use of linear graphs in mechatronic modeling is outlined and an illustrative example of sound system modeling is given.Both time-domain and frequency-domain approaches are presented for the use of linear graphs.A mechatronic model of a multi-physics system may be simplified by converting all the physical domains into an equivalent single-domain system that is entirely in the output domain of the system.This approach of converting(transforming)physical domains is presented.An illustrative example of a pressure-controlled hydraulic actuator system that operates a mechanical load is given. 展开更多
关键词 Mechatronic Modeling multi-physics Systems Integrated Unified Unique and Systematic Approach Linear Graphs Physical Domain Conversion/Transformation
下载PDF
Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding
6
作者 Chu Han Ping Jiang +1 位作者 Shaoning Geng Liangyuan Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期235-251,共17页
In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten po... In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten pool during laser welding of Al-Li alloy.To accurately compute mass data within both two and three-dimensional computational domains,three efficient computing methods,including central processing unit parallel computing,adaptive mesh refinement,and moving-frame algorithm,were uti-lized.Emphasis was placed on the distinctive equiaxed-to-columnar-to-equiaxed transition phenomenon that occurs during the entire solidification process of Al-Li alloy laser welding.Simulation results indi-cated that the growth distance of columnar grains that epitaxially grew from the base metal(BM)de-creased as the nucleation rate increased.As the nucleation rate increased,the morphology of the newly formed grains near the fusion boundary(FB)changed from columnar to equiaxed,and newly formed equiaxed grains changed from having high-order dendrites to no obvious dendrite structure.When the nucleation rate was sufficiently high,non-dendritic equiaxed grains could directly form near the FB,and there was nearly no epitaxial growth from the BM.Additionally,simulation results illustrated the com-petition among multiple grains with varying orientations that grow in 3D space near the FB.Finally,how equiaxed grain bands develop was elucidated.The equiaxed band not only hindered the growth of early columnar grains but also some of its grains could grow epitaxially to form new columnar grains.These predicted results were in good agreement with experimental measurements and observations. 展开更多
关键词 Laser welding Al-Li alloy Equiaxed-to-columnar-to-equiaxed transition multi-physics multi-scale model Multicomponent alloys 3D phase-field model
原文传递
Integration of multi-physics and machine learning-based surrogate modelling approaches for multi-objective optimization of deformed GDL of PEM fuel cells
7
作者 Jiankang Wang Hai Jiang +4 位作者 Gaojian Chen Huizhi Wang Lu Lu Jianguo Liu Lei Xing 《Energy and AI》 2023年第4期159-172,共14页
The development of artificial intelligence(AI)greatly boosts scientific and engineering innovation.As one of the promising candidates for transiting the carbon intensive economy to zero emission future,proton exchange... The development of artificial intelligence(AI)greatly boosts scientific and engineering innovation.As one of the promising candidates for transiting the carbon intensive economy to zero emission future,proton exchange membrane(PEM)fuel cells has aroused extensive attentions.The gas diffusion layer(GDL)strongly affects the water and heat management during PEM fuel cells operation,therefore multi-variable optimization,including thickness,porosity,conductivity,channel/rib widths and compression ratio,is essential for the improved cell performance.However,traditional experiment-based optimization is time consuming and economically unaffordable.To break down the obstacles to rapidly optimize GDLs,physics-based simulation and machine-learning-based surrogate modelling are integrated to build a sophisticated M 5 model,in which multi-physics and multi-phase flow simulation,machine-learning-based surrogate modelling,multi-variable and multi-objects optimization are included.Two machine learning methodologies,namely response surface methodol-ogy(RSM)and artificial neural network(ANN)are compared.The M 5 model is proved to be effective and efficient for GDL optimization.After optimization,the current density and standard deviation of oxygen dis-tribution at 0.4 V are improved by 20.8%and 74.6%,respectively.Pareto front is obtained to trade off the cell performance and homogeneity of oxygen distribution,e.g.,20.5%higher current density is achieved when sacrificing the standard deviation of oxygen distribution by 26.0%. 展开更多
关键词 multi-physics modelling Machine learning Multi-objective optimization Gas diffusion layer Proton exchange membrane fuel cells
原文传递
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
8
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun multi-physics field coupling Experimental validation PFN
下载PDF
Simultaneously realizing thermal andelectromagnetic cloaking by multi-physicalnull medium
9
作者 Yichao Liu Xiaomin Ma +6 位作者 Kun Chao Fei Sun Zihao Chen Jinyuan Shan Hanchuan Chen Gang Zhao Shaojie Chen 《Opto-Electronic Science》 2024年第2期45-59,共15页
Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration lev... Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration level,the precise and efficient control of the propagation of electromagnetic waves and heat fluxes simultaneously is particularly important.In this study,we propose a graphical designing method(i.e.,thermal-electromagnetic surface transformation)based on thermal-electromagnetic null medium to simultaneously control the propagation of electromagnetic waves and thermal fields according to the pre-designed paths.A thermal-electromagnetic cloak,which can create a cloaking effect on both electromagnetic waves and thermal fields simultaneously,is designed by thermal-electromagnetic surface transformation and verified by both numerical simulations and experimental measurements.The thermal-electromagnetic surface transformation proposed in this study provides a new methodology for simultaneous controlling on electromagnetic and temperature fields,and may have significant applications in improving thermal-electromagnetic compatibility problem,protecting of thermal-electromagnetic sensitive components,and improving efficiency of energy usage for complex onchip systems. 展开更多
关键词 transformation optics multi-physical cloak null medium
下载PDF
Heavy Rainfall Ensemble Prediction:Initial Condition Perturbation vs Multi-Physics Perturbation 被引量:6
10
作者 陈静 薛纪善 《Acta meteorologica Sinica》 SCIE 2009年第1期53-67,共15页
Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, p... Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run. 展开更多
关键词 heavy rainfall ensemble prediction initial condition perturbation multi-physics perturbation
原文传递
Electrochemical machining gap prediction with multi-physics coupling model based on two-phase turbulence flow 被引量:2
11
作者 Yuanlong CHEN Xiaochao ZHOU +1 位作者 Peixuan CHEN Ziquan WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1057-1063,共7页
Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e t... Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e turbulent model is used to describe the electrolyte flow field.The Euler–Euler model based on viscous drag and pressure force is used to calculate the twodimensional distribution of gas volume fraction.A multi-physics coupling model of electric field,two-phase flow field and temperature field is established and solved by weak coupling iteration method.The numerical simulation results of gas volume fraction, temperature and conductivity in equilibrium state are discussed.The distributions of machining gap at different time are analyzed.The predicted results of the machining gap are consistent with the experimental results, and the maximum deviation between them is less than 50 lm. 展开更多
关键词 Electrochemical machining EQUILIBRIUM Machining gap prediction multi-physics coupling Two-phase turbulent flow
原文传递
Multi-physics analysis of the RFQ for Injector Scheme Ⅱ of C-ADS driver linac 被引量:1
12
作者 王静 黄建龙 +3 位作者 何源 张小奇 张周礼 石爱民 《Chinese Physics C》 SCIE CAS CSCD 2014年第10期97-101,共5页
A 162.5 MHz, 2.1 MeV radio frequency quadruples (RFQ) structure is being designed for the Injector Scheme Ⅱ of the China Accelerator Driven Sub-critical System (C-ADS) linac. The RFQ will operate in continuous wa... A 162.5 MHz, 2.1 MeV radio frequency quadruples (RFQ) structure is being designed for the Injector Scheme Ⅱ of the China Accelerator Driven Sub-critical System (C-ADS) linac. The RFQ will operate in continuous wave (CW) mode as required. For the CW normal conducting machine, the heat management will be one of the most important issues, since the temperature fluctuation may cause cavity deformation and lead to the resonant frequency shift. Therefore a detailed multi-physics analysis is necessary to ensure that the cavity can stably work at the required power level. The multi-physics analysis process includes RF electromagnetic analysis, thermal analysis, mechanical analysis, and this process will be iterated for several cycles until a satisfactory solution can be found. As one of the widely accepted measures, the cooling water system is used for frequency fine tunning, so the tunning capability of the cooling water system is also studied under different conditions. The results indicate that with the cooling water system, both the temperature rise and the frequency shift can be controlled at an acceptable level. 展开更多
关键词 frequency shift multi-physics analysis finite element method ANSYS code
原文传递
An Objective Approach to Generating Multi-Physics Ensemble Precipitation Forecasts Based on the WRF Model 被引量:1
13
作者 Chenwei SHEN Qingyun DUAN +4 位作者 Wei GONG Yanjun GAN Zhenhua DI Chen WANG Shiguang MIAO 《Journal of Meteorological Research》 SCIE CSCD 2020年第3期601-620,共20页
Selecting proper parameterization scheme combinations for a particular application is of great interest to the Weather Research and Forecasting(WRF)model users.This study aims to develop an objective method for identi... Selecting proper parameterization scheme combinations for a particular application is of great interest to the Weather Research and Forecasting(WRF)model users.This study aims to develop an objective method for identifying a set of scheme combinations to form a multi-physics ensemble suitable for short-range precipitation forecasting in the Greater Beijing area.The ensemble is created by using statistical techniques and some heuristics.An initial sample of 90 scheme combinations was first generated by using Latin hypercube sampling(LHS).Then,after several rounds of screening,a final ensemble of 40 combinations were chosen.The ensemble forecasts generated for both the training and verification cases using these combinations were evaluated based on several verification metrics,including threat score(TS),Brier score(BS),relative operating characteristics(ROC),and ranked probability score(RPS).The results show that TS of the final ensemble improved by 9%-33%over that of the initial ensemble.The reliability was improved for rain≤10 mm day^-1,but decreased slightly for rain>10 mm day^-1 due to insufficient samples.The resolution remained about the same.The final ensemble forecasts were better than that generated from randomly sampled scheme combinations.These results suggest that the proposed approach is an effective way to select a multi-physics ensemble for generating accurate and reliable forecasts. 展开更多
关键词 ensemble precipitation forecast Weather Research and Forecasting(WRF)model multi-physics verification BOOTSTRAPPING
原文传递
Multi-physics analysis of a 325 MHz bi-periodic on-axis coupled accelerating structure
14
作者 Guan Shu Jing-Ru Zhang +2 位作者 Xiao-Tong Zhang Hao-Wei Yuan Yun-Long Chi 《Radiation Detection Technology and Methods》 2017年第2期81-85,共5页
Purpose A 325-MHz bi-periodic on-axis coupled accelerating structure prototype which consists of two bi-periodic accelerating modules is under fabrication in the Institute of High Energy Physics,Beijing,dedicated to a... Purpose A 325-MHz bi-periodic on-axis coupled accelerating structure prototype which consists of two bi-periodic accelerating modules is under fabrication in the Institute of High Energy Physics,Beijing,dedicated to a 10-MeV/100 kW industrial linear electron accelerator.According to the beam dynamics study,the average power dissipated in the prototype cavity is about 19.1 kW.Effective cooling scheme is one of the most important issues in the high-power operation.Methods This paper mainly deals with the RF,thermal and structural coupled analyses of the accelerating structure prototype with the help of the ANSYS code.The cooling scheme is optimized to minimize the temperature rise,displacement and von Mises stresses.Results The temperature and stress distributions in the steady state are presented.The maximum von Mises stress is much lower than the yield strength limit of the corresponding material.The frequency shift caused by the thermal expansion is calculated as well,which is within the scope of the tuning range.Conclusion The coupled analyses based on the ANSYS software package are presented to design and optimize the cooling scheme of the accelerating structure.The von Mises stresses are much lower than the yield strength limit of the material.The calculation results indicate that our cooling scheme can deal with the dissipated RF power efficiently. 展开更多
关键词 Bi-periodic On-axis Industrial accelerator multi-physics analysis
原文传递
Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation
15
作者 Haoran Xu Jingbo Ma +6 位作者 Peng Tan Bin Chen Zhen Wu Yanxiang Zhang Huizhi Wang Jin Xuan Meng Ni 《Energy and AI》 2020年第1期11-21,共11页
The use of solid oxide fuel cells(SOFCs)is a promising approach towards achieving sustainable electricity pro-duction from fuel.The utilisation of the hydrocarbons and biomass in SOFCs is particularly attractive owing... The use of solid oxide fuel cells(SOFCs)is a promising approach towards achieving sustainable electricity pro-duction from fuel.The utilisation of the hydrocarbons and biomass in SOFCs is particularly attractive owing to their wide distribution,high energy density,and low price.The long-term operation of SOFCs using such fuels remains difficult owing to a lack of an effective diagnosis and optimisation system,which requires not only a precise analysis but also a fast response.In this study,we developed a hybrid model for an on-line analysis of SOFCs at the cell level.The model combines a multi-physics simulation(MPS)and deep learning,overcoming the complexity of MPS for a model-based control system,and reducing the cost of building a database(compared with the experiments)for the training of a deep neural network.The maximum temperature gradient and heat generation are two target parameters for an efficient operation of SOFCs.The results show that a precise predic-tion can be achieved from a trained AI algorithm,in which the relative error between the MPS and AI models is less than 1%.Moreover,an online optimisation is realised using a genetic algorithm,achieving the maximum power density within the limitations of the temperature gradient and operating conditions.This method can also be applied to the prediction and optimisation of other non-liner,dynamic systems. 展开更多
关键词 Solid oxide fuel cell multi-physics simulation Artificial intelligence Deep neural network Hybrid model On-line optimisation
原文传递
Thermal management by manipulating electromagnetic parameters
16
作者 王云 梁迪飞 +1 位作者 韩天成 邓龙江 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期21-27,共7页
Electromagnetic absorbing materials may convert electromagnetic energy into heat energy and dissipate it.However,in a high-power electromagnetic radiation environment,the temperature of the absorbing material rises si... Electromagnetic absorbing materials may convert electromagnetic energy into heat energy and dissipate it.However,in a high-power electromagnetic radiation environment,the temperature of the absorbing material rises significantly and even burns.It becomes critical to ensure electromagnetic absorption performance while minimizing temperature rise.Here,we systematically study the coupling mechanism between the electromagnetic field and the temperature field when the absorbing material is irradiated by electromagnetic waves.We find out the influence of the constitutive parameters of the absorbing materials(including uniform and non-uniform)on the temperature distribution.Finally,through a smart design,we achieve better absorption and lower temperature simultaneously.The accuracy of the model is affirmed as simulation results aligned with theoretical analysis.This work provides a new avenue to control the temperature distribution of absorbing materials. 展开更多
关键词 multi-physics field electromagnetic-thermal coupling microwave absorption high power application
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
17
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Simulation Study of CMUT for Pressure Sensing Applications
18
作者 Yan Zhou Jie Liu +1 位作者 Xin Lu Quanfang Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第3期22-31,共10页
Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether a... Capacitive micromechanical ultrasonic transducers(CMUTs)have been widely studied because they can be used as substitutes for piezoelectric ultrasonic transducers in imaging applications.However,it is unclear whether and how CMUTs can be developed for sensors incorporating other functions.For instance,researchers have proposed the use of CMUTs for pressure sensing,but fundamental and practical application issues remain unsolved.This study explored ways in which a pressure sensor can be properly developed based on a CMUT prototype using a simulation approach.A three-dimensional finite element model of CMUTs was designed using the COMSOL Multiphysics software by combining the working principle of CMUTs with pressure sensing characteristics in which the resonance frequency of the CMUT cell shifts accordingly when it is subjected to an external pressure.Simultaneously,when subjected to pressure,the CMUT membrane deforms,thus the pressure can be reflected by the change in the capacitance. 展开更多
关键词 capacitive micromechanical ultrasonic transducers(CMUTs) pressure sensor collapsing voltage resonance frequency CAPACITANCE finite element multi-physics simulation
下载PDF
Active Truss Metamaterials: Modelling and Tuning of Band Gaps
19
作者 Daniel Calegaro Stefano Mariani 《Journal of Materials Science and Chemical Engineering》 2023年第8期127-134,共8页
Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergenc... Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials;this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps. . 展开更多
关键词 Acoustic Metamaterials HYPERELASTICITY multi-physics PIEZOELECTRICITY BUCKLING
下载PDF
Active Truss Metamaterials: Modelling and Tuning of Band Gaps
20
作者 Daniel Calegaro Stefano Mariani 《Journal of Modern Physics》 2023年第8期127-134,共12页
Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergenc... Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials;this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps. . 展开更多
关键词 Acoustic Metamaterials HYPERELASTICITY multi-physics PIEZOELECTRICITY BUCKLING
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部