The generation of a flat supercontinuum of over 80nm in the 1550nm region by injecting 1.6ps 10 GHz repetition rate optical pulses into an 80-m-long dispersion-flattened microstructure fibre is demonstrated. The fibre...The generation of a flat supercontinuum of over 80nm in the 1550nm region by injecting 1.6ps 10 GHz repetition rate optical pulses into an 80-m-long dispersion-flattened microstructure fibre is demonstrated. The fibre has small normal dispersion with a variation smaller than 1.5 (ps·nm^-1·km^-1) between 1500 and 1650nm. The generated supercontinuum ranging from 1513 to 1591 nm has the flatness of ±1.5 dB and it is not so flat in the range of several nanometres around the pump wavelength 1552nm. Numerical simulation is also used to study the effect of optical loss, fibre parameters and pumping conditions on supercontinuum generation in the dispersion-flattened microstructure fibre, and can be used for further optimization to generate flat broad spectra.展开更多
文摘The generation of a flat supercontinuum of over 80nm in the 1550nm region by injecting 1.6ps 10 GHz repetition rate optical pulses into an 80-m-long dispersion-flattened microstructure fibre is demonstrated. The fibre has small normal dispersion with a variation smaller than 1.5 (ps·nm^-1·km^-1) between 1500 and 1650nm. The generated supercontinuum ranging from 1513 to 1591 nm has the flatness of ±1.5 dB and it is not so flat in the range of several nanometres around the pump wavelength 1552nm. Numerical simulation is also used to study the effect of optical loss, fibre parameters and pumping conditions on supercontinuum generation in the dispersion-flattened microstructure fibre, and can be used for further optimization to generate flat broad spectra.