The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla...The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.展开更多
为了研究智能反坦克子弹药(BAT)对声目标机动检测与跟踪的问题,推导了适合智能子弹药系统的MUSIC估计算法,并计算了声信号的空间方位谱及功率谱,提出了一种针对信号几何窗口的变量——当前平均改变能量(current average change energy,C...为了研究智能反坦克子弹药(BAT)对声目标机动检测与跟踪的问题,推导了适合智能子弹药系统的MUSIC估计算法,并计算了声信号的空间方位谱及功率谱,提出了一种针对信号几何窗口的变量——当前平均改变能量(current average change energy,CACE),利用该变量推导了基于当前平均改变能量的机动检测算法,将此算法与机动目标跟踪变维自适应Kalm an滤波模型相结合,得到了基于当前平均改变能量的机动检测与变维自适应Kalm an滤波算法(CACEMD-VDAKF);通过半实物仿真实验,计算了目标在不同运动状态下的空间功率谱和方位谱,证实了该算法对声信号处理的可行性,MATLAB仿真结果验证了CACEMD-VDAKF算法对二维声目标跟踪的有效性及稳定性。展开更多
针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进...针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进一步矫正信号导向矢量;然后,利用Capon功率谱初步重构干扰加噪声协方差矩阵;接着,利用干扰子空间的正交性和多重信号分类(Multiple Signal Classification,MUSIC)功率谱进一步精确重构干扰加噪声协方差矩阵;最后,计算出最优权值矢量。仿真结果表明,所提算法在大角度失配和低快拍数条件下具有较好的稳健性。展开更多
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971218,61601167,61371169)。
文摘The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.
文摘针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进一步矫正信号导向矢量;然后,利用Capon功率谱初步重构干扰加噪声协方差矩阵;接着,利用干扰子空间的正交性和多重信号分类(Multiple Signal Classification,MUSIC)功率谱进一步精确重构干扰加噪声协方差矩阵;最后,计算出最优权值矢量。仿真结果表明,所提算法在大角度失配和低快拍数条件下具有较好的稳健性。