Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th...The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads.展开更多
A two-dimensional model,employing a dynamic mesh technology,is used to simulate numerically the transient multiphaseflowfield produced by two submerged parallel guns.After a grid refinement study ensuring grid inde-pende...A two-dimensional model,employing a dynamic mesh technology,is used to simulate numerically the transient multiphaseflowfield produced by two submerged parallel guns.After a grid refinement study ensuring grid inde-pendence,five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle.The simulation results show thatflow interference is enabled when the distance between the par-allel barrels is relatively small;accordingly,the generation and evolution of the vapor cavity becomes more com-plex.By means of the Q criterion for vorticity detection,it is shown that cavitation causes the generation of vorticity and the evolution of the vapor cavity can result in an asymmetric distribution of vorticity for a certain distance of the barrels.In particular,the evolution of the vapor cavity can hinder the expansion of the gas and force it toflow outward,while an asymmetric distribution of vorticity can lead to a gas jetflowing outward and rotating simultaneously.展开更多
The simulation of the artillery interior and intermediate ballistics problem is performed to investigate the influence of a gas dynamics device,muzzle brake,on the muzzle hazard phenomena,such as flash and blast waves...The simulation of the artillery interior and intermediate ballistics problem is performed to investigate the influence of a gas dynamics device,muzzle brake,on the muzzle hazard phenomena,such as flash and blast waves.The correlation of the chemical reactions with the characteristics of the muzzle flow field is analyzed by the simulation for a further understanding of the secondary combustion phenomenon of the muzzle flow.The novel structure of muzzle flow caused by the muzzle brake is presented by the simultaneous solution of the interior ballistics model and multi-species Navier-Stokes equations in order to analyze the influence of the muzzle brake structure on the chemical reactions.The secondary combustion of the muzzle flow due to the oxygen-supplement chemical reactions is obtained by the chemical reaction kinetic model.The interaction of the blast waves released from the muzzle brake is illustrated in detail and the mechanism of the formation of muzzle flash is analyzed.This research provides a reference for the studies on the suppression of the muzzle flash.展开更多
Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significa...Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.展开更多
This research work deals with the design of a tunable muzzle brake [10] for a rifle chambered in 5.56 x 45 NATO ammunition. It proposes to solve the problem of handling differences from shooter to shooter by incorpora...This research work deals with the design of a tunable muzzle brake [10] for a rifle chambered in 5.56 x 45 NATO ammunition. It proposes to solve the problem of handling differences from shooter to shooter by incorporating the feature of tunability. Beside this, it also solves the problem of requirement of optimum recoil in short recoil weapons. This innovation gives this design an edge over its already existing counterparts in the market. The product is designed using the internal ballistics calculations and the investigations been performed using solidworks flow simulation tool and ANSYS static structural to check the parameters like velocity distribution, pressure growth, and muzzle brake force along the series of ports and comparison of the so found results with those devised by the authors of the documents mentioned in references. This assures the market adaptability of the product for satisfactory performance, when brought among its already existing counterpart, though with a slight edge over them due to tunability. The results so found shall be concluded satisfactory regarding the performance of muzzle brake.展开更多
During the electromagnetic railgun launching process,there will be a complex flow field with high temperature in the muzzle area because of the high-speed friction,transition and seco ndary arc-ignition.This paper mod...During the electromagnetic railgun launching process,there will be a complex flow field with high temperature in the muzzle area because of the high-speed friction,transition and seco ndary arc-ignition.This paper models the muzzle area of railgun when the projectile is far away from the muzzle,and the dynamic simulation of the flow field with secondary arc in the muzzle area is carried out based on the magneto hydrodynamic equations.Meanwhile,a multi-component plasma transport model is used to analyze the muzzle arc plasma flow process of the mixed gas of Al vapor and the air.Furthermore,the pressure boundary conditions are fitted by the dynamic mesh simulation results.The current and voltage of the muzzle are obtained through the emission experiment of the railgun experimental prototype.We load the current data into the simulation model and the voltage of experiments and simulations are compared,which proves the accuracy of the simulation.Then the plasma temperature and the composition of Al vapor in the muzzle flow process are analyzed in-depth.展开更多
The high pressure waves generated due to muzzle blast flow of tank gun during firing is a critical issue to examine. The impulsive noise from the gun has various negative effects such as damage of human bodies, damage...The high pressure waves generated due to muzzle blast flow of tank gun during firing is a critical issue to examine. The impulsive noise from the gun has various negative effects such as damage of human bodies, damage of structures, creating an environmental, social problem and also military problems such as exposure of location of troops. This high pressure impulsive sound, generated during the blast flow, was studied and attenuated. An axisymmetric computational domain was constructed by employing Spalart Allmaras turbulence model. Approximately 90% of pressure and 20 dB of sound level are reduced due to the use of the three baffle silencer at the muzzle end of the gun barrel, in comparison with the tank gun without silencer. Also, the sound pressure level at different points in the ambient region shows the same attenuation in results. This study will be helpful to understand the blast wave characteristics and also to get a good idea to design silencer for large caliber weapon system.展开更多
In order to make an efficient analysis of muzzle disturbance influenced by projectile mass, mass eccentricity, dynamic unbalance, load deviation, and clearance between projectile and bore, the orthogonal test method i...In order to make an efficient analysis of muzzle disturbance influenced by projectile mass, mass eccentricity, dynamic unbalance, load deviation, and clearance between projectile and bore, the orthogonal test method is extended to analyze the launch dynamics. Taking a tank as the research object, the launch dynamics equations of a tank system are established. Based on the stochastic simulation principle, the tank launch dynamic simulation system is constructed and through the development of the orthogonal test method, the influence of projectile on muzzle disturbance is studied. The study results provided both theoretical foundation and simulation approaches for improving the firing dispersion of the tank.展开更多
The injury of gunners caused by muzzle shock-wave has always been a great problem when firing inside the protective cover. The distribution regularity and personnel injury from the muzzle blast-wave were investigated ...The injury of gunners caused by muzzle shock-wave has always been a great problem when firing inside the protective cover. The distribution regularity and personnel injury from the muzzle blast-wave were investigated by both test and numerical simulation. Through the inside firing test, the changes of overpressure and noise have been measured at different measuring points in the thin-wall cover structure with different open widths and shallow covering thickness. The distribution regularity of muzzle shock-wave with different firing port widths is calculated by ANSYS/LSDYNA software. The overpressure distribution curves of muzzle shock-wave inside the structure can be obtained by comparing the test results with the numerical results. Then, the influence of open width and shallow covering thickness is proposed to give a reference to the protective design under the condition of the inside firing with the same cannon caliber.展开更多
A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FV...A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FVM)and the realizable k?ε turbulence model,we adopted the holistic movement of a partitioned mesh processing method coupled with the intermediate ballistic model and the six degree?of?freedom model(6?DOF). We compared the flow field characteristics at the velocity of 1 730.4,978.3,and 323.4 m/s. The results indicate that the pressure of the hypersonic initial flow field is much higher than that of the subsonic and supersonic initial flow fields. In the case of the subsonic(323.4 m/s)flow field,the tiny disturbance spreads throughout the whole domain. But in the cases of the supersonic(978.3 m/s) and the hypersonic(1 730.4 m/s) flow fields,it cannot spread to the upstream disturbance source,and the disturbance domain of the supersonic flow field is wider than that of the hypersonic. It is noted that the subsonic flow field has a rounded shock wave before the projectile. However,in the supersonic and hypersonic flow fields,a shear layer is formed which begins from the head of the projectile and extends outward from the side of the projectile. Then a multi?layer shock wave is formed composed of coronal shock waves,bottom shock waves,reflected shock waves,and Mach disk.展开更多
In this paper,a passive muzzle arc control device(PMACD)of the augmented railguns is studied.By discussing its performance at different numbers of extra rails,a parameter optimization model is proposed.Through the cal...In this paper,a passive muzzle arc control device(PMACD)of the augmented railguns is studied.By discussing its performance at different numbers of extra rails,a parameter optimization model is proposed.Through the calculation model,it is found that the PMACD works well in the simple railgun,which refers to the gun that there is only one pair of rails in the inner bore.The PMACD may decrease the simple railgun’s armature peak current and muzzle arc,but affect its muzzle velocity not much.However,in the augmented railguns it has different characteristics.If the parameters of the PMACD are not selected suitable.It may increase the armature peak current and muzzle arc,but greatly decrease the velocity.The reason for this problem is that the extra rails generate a strong magnetic field in front of the armature,which induces a large current to change the armature current.It is also found that when the resistance and inductance parameters of the PMACD satisfy with the optimization formula,the PMACD can also play a good role in arc suppression in the augmented railguns.Experiments of an augmented railgun with a stainless steel PMACD are carried out to verify this optimization method.Results show that the muzzle arc is obviously controlled.This work may provide a reference for the design of the muzzle arc control device.展开更多
The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process...The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process was used.The motion of the rifle was detected by the use of the laser interferometer and the optical camera.The recoil velocity time courses were determined by smoothing and differentiation of experimental position records.The results of the experiments indicated that in the case of an active automatics system two values of the recoil velocity can be used for calculation of the energetic efficiency coefficient:the maximum recoil velocity and the final recoil velocity at the end of the automatics action cycle.The values of the coefficient,calculated using these two values of the recoil velocity,distinctly differ.However,it was shown that their values indicate the same relation between the efficiency of various muzzle brakes.The value of the efficiency coefficient,determined on the basis of the final recoil velocity value,is practically the same as that determined on the basis of the final recoil velocity value for the rifle with an inactive automatics system.展开更多
A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized s...A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized shooting experiment platform with a high-speed camera is built to observe the evolution process of such a multiphase flow field. The simulated phase distribution diagram is agreed well with the shadow photo of the experiment, indicating that the numerical model is reasonable. Further examinations of the multiphase flow fields by using the submerged and sealed launch methods show that use of the sealed launch can significantly improve the interior ballistic performance of an underwater gun. In the cases by using these two types of underwater launch methods, the displacement of the projectile within the range of the muzzle flow field meets the exponential law over time. Moreover, a not fully developed bottle-shaped shock wave is formed when t = 0.4 ms, but this bottle-shaped shock wave expands more rapidly for the sealed launch. In addition, the amplitude of pressure oscillation for the sealed launch is larger than that of the submerged launch, but the pressure oscillation of the sealed launch lasts shorter.展开更多
The integrative process of a quiescent projectile accelerated by high-pressure gas to shoot out at a supersonic speed and beyond the range of a precursor flow field was simulated numerically. The calculation was based...The integrative process of a quiescent projectile accelerated by high-pressure gas to shoot out at a supersonic speed and beyond the range of a precursor flow field was simulated numerically. The calculation was based on ALE equations and a second-order precision Roe method that adopted chimera grids and a dynamic mesh. From the predicted results, the coupling and interaction among the precursor flow field, propellant gas flow field and high-speed projectile were discussed in detail. The shock-vortex interaction, shockwave reflection, shock-projectile interaction with shock diffraction, and shock focus were clearly demonstrated to explain the effect on the acceleration of the projectile.展开更多
To improve the accuracy of numerical simulation of muzzle chemical flow field,and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions i...To improve the accuracy of numerical simulation of muzzle chemical flow field,and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions in bore. The calculation in bore uses the gibbs free-energy minimization method and the classical interior ballistics model. The simulation of the muzzle flow field employs the multi-component ALE( Arbitrary Lagrange-Euler) equations. Computations are performed for a 12. 7 mm gun. From 2. 48 ms to3. 14 ms,the projectile moves in the gun barrel. CO and H2 O masses decrease by 3. 37% and 6. 51%,and H2 and CO2masses increase by 11. 11% and 10. 58%. The changes conform to the fact that the water-gas equilibrium reaction of all reactions plays a dominant role in this phase. After the projectile leaves the barrel,the masses of H2 and CO decrease,and the masses of H2 O and CO2 increase. When it moves to 80 d away from the muzzle,the decreases are 12. 75% and 8. 05%,and the increases are 12. 76% and 36. 26%,which tallies with the existence of muzzle flame. Further,CO and H2 burn more and more fiercely with the muzzle pressure pg increasing,and burn more and more weakly with the altitude rising. When two projectiles launch in series,the combustion of the second projectile muzzle flow field is fiercer than the first projectile. Analysis results have shown that the proposed method is effective for simulating the muzzle flow filed.展开更多
Because of the influence of conventio n al ammunition working in high rotation,high overloading,high temperature,hig h pressure and other harsh environments during the launch,it is difficult to m easure the initial ve...Because of the influence of conventio n al ammunition working in high rotation,high overloading,high temperature,hig h pressure and other harsh environments during the launch,it is difficult to m easure the initial velocity of projectile muzzle.This paper analyzes and compar es each sort of characteristics of several ty pical initial velocity measurement methods of projectile muzzle both at home and abroad,and proposes the development trend based on current research and practi cal aplication.展开更多
Numerical investigations on the launch process of a gun-launched missile from the muz- zle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to d...Numerical investigations on the launch process of a gun-launched missile from the muz- zle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW +) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the free- flight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point.展开更多
Based on non-equilibrium thermodynamic theory, a temperature field model of gun muzzle is setup We obtain not only a solitary solution, but also a bifurcation solution. The physical picture of the solutions is corresp...Based on non-equilibrium thermodynamic theory, a temperature field model of gun muzzle is setup We obtain not only a solitary solution, but also a bifurcation solution. The physical picture of the solutions is corresponding to the center flame and secondary flame of the gun muzzle.展开更多
Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system ...Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system(MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications,MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms.The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun.A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
文摘The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads.
基金This work is supported by the National Natural Science Foundation of China(Grant No.52201385)the Natural Science Foundation of Shanxi Province(Grant No.20210302123023)the Shanxi Scholarship Council of China(Grant No.2020-106).
文摘A two-dimensional model,employing a dynamic mesh technology,is used to simulate numerically the transient multiphaseflowfield produced by two submerged parallel guns.After a grid refinement study ensuring grid inde-pendence,five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle.The simulation results show thatflow interference is enabled when the distance between the par-allel barrels is relatively small;accordingly,the generation and evolution of the vapor cavity becomes more com-plex.By means of the Q criterion for vorticity detection,it is shown that cavitation causes the generation of vorticity and the evolution of the vapor cavity can result in an asymmetric distribution of vorticity for a certain distance of the barrels.In particular,the evolution of the vapor cavity can hinder the expansion of the gas and force it toflow outward,while an asymmetric distribution of vorticity can lead to a gas jetflowing outward and rotating simultaneously.
文摘The simulation of the artillery interior and intermediate ballistics problem is performed to investigate the influence of a gas dynamics device,muzzle brake,on the muzzle hazard phenomena,such as flash and blast waves.The correlation of the chemical reactions with the characteristics of the muzzle flow field is analyzed by the simulation for a further understanding of the secondary combustion phenomenon of the muzzle flow.The novel structure of muzzle flow caused by the muzzle brake is presented by the simultaneous solution of the interior ballistics model and multi-species Navier-Stokes equations in order to analyze the influence of the muzzle brake structure on the chemical reactions.The secondary combustion of the muzzle flow due to the oxygen-supplement chemical reactions is obtained by the chemical reaction kinetic model.The interaction of the blast waves released from the muzzle brake is illustrated in detail and the mechanism of the formation of muzzle flash is analyzed.This research provides a reference for the studies on the suppression of the muzzle flash.
文摘Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.
基金supported by Department of Mechanical Engineering, Maulana Azad National Institute of Technology (MANIT) Bhopal,India
文摘This research work deals with the design of a tunable muzzle brake [10] for a rifle chambered in 5.56 x 45 NATO ammunition. It proposes to solve the problem of handling differences from shooter to shooter by incorporating the feature of tunability. Beside this, it also solves the problem of requirement of optimum recoil in short recoil weapons. This innovation gives this design an edge over its already existing counterparts in the market. The product is designed using the internal ballistics calculations and the investigations been performed using solidworks flow simulation tool and ANSYS static structural to check the parameters like velocity distribution, pressure growth, and muzzle brake force along the series of ports and comparison of the so found results with those devised by the authors of the documents mentioned in references. This assures the market adaptability of the product for satisfactory performance, when brought among its already existing counterpart, though with a slight edge over them due to tunability. The results so found shall be concluded satisfactory regarding the performance of muzzle brake.
文摘During the electromagnetic railgun launching process,there will be a complex flow field with high temperature in the muzzle area because of the high-speed friction,transition and seco ndary arc-ignition.This paper models the muzzle area of railgun when the projectile is far away from the muzzle,and the dynamic simulation of the flow field with secondary arc in the muzzle area is carried out based on the magneto hydrodynamic equations.Meanwhile,a multi-component plasma transport model is used to analyze the muzzle arc plasma flow process of the mixed gas of Al vapor and the air.Furthermore,the pressure boundary conditions are fitted by the dynamic mesh simulation results.The current and voltage of the muzzle are obtained through the emission experiment of the railgun experimental prototype.We load the current data into the simulation model and the voltage of experiments and simulations are compared,which proves the accuracy of the simulation.Then the plasma temperature and the composition of Al vapor in the muzzle flow process are analyzed in-depth.
基金Project(NRF-2010-013-D00007) supported by the National Research Foundation of KoreaProject supported by 2010 Year Research Professor Fund of Gyeongsang National University, Korea and NIIED Korea
文摘The high pressure waves generated due to muzzle blast flow of tank gun during firing is a critical issue to examine. The impulsive noise from the gun has various negative effects such as damage of human bodies, damage of structures, creating an environmental, social problem and also military problems such as exposure of location of troops. This high pressure impulsive sound, generated during the blast flow, was studied and attenuated. An axisymmetric computational domain was constructed by employing Spalart Allmaras turbulence model. Approximately 90% of pressure and 20 dB of sound level are reduced due to the use of the three baffle silencer at the muzzle end of the gun barrel, in comparison with the tank gun without silencer. Also, the sound pressure level at different points in the ambient region shows the same attenuation in results. This study will be helpful to understand the blast wave characteristics and also to get a good idea to design silencer for large caliber weapon system.
基金funded by the Natural Science Foundation of China Government(11472135)
文摘In order to make an efficient analysis of muzzle disturbance influenced by projectile mass, mass eccentricity, dynamic unbalance, load deviation, and clearance between projectile and bore, the orthogonal test method is extended to analyze the launch dynamics. Taking a tank as the research object, the launch dynamics equations of a tank system are established. Based on the stochastic simulation principle, the tank launch dynamic simulation system is constructed and through the development of the orthogonal test method, the influence of projectile on muzzle disturbance is studied. The study results provided both theoretical foundation and simulation approaches for improving the firing dispersion of the tank.
基金Supported by National Natural Science Foundation of China (No. 50578082)
文摘The injury of gunners caused by muzzle shock-wave has always been a great problem when firing inside the protective cover. The distribution regularity and personnel injury from the muzzle blast-wave were investigated by both test and numerical simulation. Through the inside firing test, the changes of overpressure and noise have been measured at different measuring points in the thin-wall cover structure with different open widths and shallow covering thickness. The distribution regularity of muzzle shock-wave with different firing port widths is calculated by ANSYS/LSDYNA software. The overpressure distribution curves of muzzle shock-wave inside the structure can be obtained by comparing the test results with the numerical results. Then, the influence of open width and shallow covering thickness is proposed to give a reference to the protective design under the condition of the inside firing with the same cannon caliber.
基金supported in part by the National Natural Science Foundation of China (No. 51305204)
文摘A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FVM)and the realizable k?ε turbulence model,we adopted the holistic movement of a partitioned mesh processing method coupled with the intermediate ballistic model and the six degree?of?freedom model(6?DOF). We compared the flow field characteristics at the velocity of 1 730.4,978.3,and 323.4 m/s. The results indicate that the pressure of the hypersonic initial flow field is much higher than that of the subsonic and supersonic initial flow fields. In the case of the subsonic(323.4 m/s)flow field,the tiny disturbance spreads throughout the whole domain. But in the cases of the supersonic(978.3 m/s) and the hypersonic(1 730.4 m/s) flow fields,it cannot spread to the upstream disturbance source,and the disturbance domain of the supersonic flow field is wider than that of the hypersonic. It is noted that the subsonic flow field has a rounded shock wave before the projectile. However,in the supersonic and hypersonic flow fields,a shear layer is formed which begins from the head of the projectile and extends outward from the side of the projectile. Then a multi?layer shock wave is formed composed of coronal shock waves,bottom shock waves,reflected shock waves,and Mach disk.
基金acknowledge the Fundamental Research Funds for the Central Universities(Grants No 309190112102)the Natural Science Foundation of Jiangsu Province(Grants No BK20200493).
文摘In this paper,a passive muzzle arc control device(PMACD)of the augmented railguns is studied.By discussing its performance at different numbers of extra rails,a parameter optimization model is proposed.Through the calculation model,it is found that the PMACD works well in the simple railgun,which refers to the gun that there is only one pair of rails in the inner bore.The PMACD may decrease the simple railgun’s armature peak current and muzzle arc,but affect its muzzle velocity not much.However,in the augmented railguns it has different characteristics.If the parameters of the PMACD are not selected suitable.It may increase the armature peak current and muzzle arc,but greatly decrease the velocity.The reason for this problem is that the extra rails generate a strong magnetic field in front of the armature,which induces a large current to change the armature current.It is also found that when the resistance and inductance parameters of the PMACD satisfy with the optimization formula,the PMACD can also play a good role in arc suppression in the augmented railguns.Experiments of an augmented railgun with a stainless steel PMACD are carried out to verify this optimization method.Results show that the muzzle arc is obviously controlled.This work may provide a reference for the design of the muzzle arc control device.
基金supported by the National Research Centre[grant number DOBR/0046/R/ID1/2012/03]。
文摘The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process was used.The motion of the rifle was detected by the use of the laser interferometer and the optical camera.The recoil velocity time courses were determined by smoothing and differentiation of experimental position records.The results of the experiments indicated that in the case of an active automatics system two values of the recoil velocity can be used for calculation of the energetic efficiency coefficient:the maximum recoil velocity and the final recoil velocity at the end of the automatics action cycle.The values of the coefficient,calculated using these two values of the recoil velocity,distinctly differ.However,it was shown that their values indicate the same relation between the efficiency of various muzzle brakes.The value of the efficiency coefficient,determined on the basis of the final recoil velocity value,is practically the same as that determined on the basis of the final recoil velocity value for the rifle with an inactive automatics system.
基金This work was supported by the National Natural Science Foundation of China(No.11372139)the China Postdoctoral Science Foundation(2020M681596).
文摘A two-dimensional axisymmetric model, employing a dynamic mesh and user-defined functions, is used to numerically simulate the transient multiphase flow field produced by an underwater gun. Furthermore, a visualized shooting experiment platform with a high-speed camera is built to observe the evolution process of such a multiphase flow field. The simulated phase distribution diagram is agreed well with the shadow photo of the experiment, indicating that the numerical model is reasonable. Further examinations of the multiphase flow fields by using the submerged and sealed launch methods show that use of the sealed launch can significantly improve the interior ballistic performance of an underwater gun. In the cases by using these two types of underwater launch methods, the displacement of the projectile within the range of the muzzle flow field meets the exponential law over time. Moreover, a not fully developed bottle-shaped shock wave is formed when t = 0.4 ms, but this bottle-shaped shock wave expands more rapidly for the sealed launch. In addition, the amplitude of pressure oscillation for the sealed launch is larger than that of the submerged launch, but the pressure oscillation of the sealed launch lasts shorter.
基金the National Key Laboratory of Transient Physics of China
文摘The integrative process of a quiescent projectile accelerated by high-pressure gas to shoot out at a supersonic speed and beyond the range of a precursor flow field was simulated numerically. The calculation was based on ALE equations and a second-order precision Roe method that adopted chimera grids and a dynamic mesh. From the predicted results, the coupling and interaction among the precursor flow field, propellant gas flow field and high-speed projectile were discussed in detail. The shock-vortex interaction, shockwave reflection, shock-projectile interaction with shock diffraction, and shock focus were clearly demonstrated to explain the effect on the acceleration of the projectile.
文摘To improve the accuracy of numerical simulation of muzzle chemical flow field,and study the gunpowder combustion productions, the muzzle flow field is simulated coupled with the calculation of combustion productions in bore. The calculation in bore uses the gibbs free-energy minimization method and the classical interior ballistics model. The simulation of the muzzle flow field employs the multi-component ALE( Arbitrary Lagrange-Euler) equations. Computations are performed for a 12. 7 mm gun. From 2. 48 ms to3. 14 ms,the projectile moves in the gun barrel. CO and H2 O masses decrease by 3. 37% and 6. 51%,and H2 and CO2masses increase by 11. 11% and 10. 58%. The changes conform to the fact that the water-gas equilibrium reaction of all reactions plays a dominant role in this phase. After the projectile leaves the barrel,the masses of H2 and CO decrease,and the masses of H2 O and CO2 increase. When it moves to 80 d away from the muzzle,the decreases are 12. 75% and 8. 05%,and the increases are 12. 76% and 36. 26%,which tallies with the existence of muzzle flame. Further,CO and H2 burn more and more fiercely with the muzzle pressure pg increasing,and burn more and more weakly with the altitude rising. When two projectiles launch in series,the combustion of the second projectile muzzle flow field is fiercer than the first projectile. Analysis results have shown that the proposed method is effective for simulating the muzzle flow filed.
基金Natural Science Foundation of Shanxi Province (No.2010011022-4)
文摘Because of the influence of conventio n al ammunition working in high rotation,high overloading,high temperature,hig h pressure and other harsh environments during the launch,it is difficult to m easure the initial velocity of projectile muzzle.This paper analyzes and compar es each sort of characteristics of several ty pical initial velocity measurement methods of projectile muzzle both at home and abroad,and proposes the development trend based on current research and practi cal aplication.
基金financially supported by the National Natural Science Foundation of China (No. 11402119)the National Defence Pre-research Foundation of China (No. 404040302)
文摘Numerical investigations on the launch process of a gun-launched missile from the muz- zle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW +) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the free- flight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point.
文摘Based on non-equilibrium thermodynamic theory, a temperature field model of gun muzzle is setup We obtain not only a solitary solution, but also a bifurcation solution. The physical picture of the solutions is corresponding to the center flame and secondary flame of the gun muzzle.
文摘Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system(MRS) and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications,MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms.The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun.A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.