The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions ca...The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.展开更多
Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great e...Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.展开更多
利用CSR(Center for Space Research)发布的GRACE RL05月重力场模型数据,通过水文模型GLDAS(Global Land Data Assimilation System)和CPC(Climate Prediction Center)扣除土壤水和雪水的影响,根据冰川模型扣除GIA(Global Isostatic Adj...利用CSR(Center for Space Research)发布的GRACE RL05月重力场模型数据,通过水文模型GLDAS(Global Land Data Assimilation System)和CPC(Climate Prediction Center)扣除土壤水和雪水的影响,根据冰川模型扣除GIA(Global Isostatic Adjustment)的影响,采用P3M6去相关滤波和300 km扇形滤波,基于最小二乘拟合的方法得到日本MW 9.0地震的同震及断层上下盘两个特征点重力变化时间序列,利用PSGRN/PSCMP模型对日本MW 9.0地震区域黏滞性进行了反演,并计算了同震及震后5年研究区域重力变化的空间分布.结果表明,扣除土壤水和冰川均衡调整因素的影响,同震重力变化为-5.2×10-8~2.9×10-8 ms-2;两个特征点在震后5年重力均增加,下盘重力增加较大;日本MW 9.0地震区域黏滞性横向差异较明显,断层上下盘的地幔黏滞系数分别为2.5×1018 Pa·s、5.0×1017 Pa·s时,与GRACE观测值较接近,综合考虑断层上下盘的震后重力变化,区域黏滞系数大约为1.5×1018 Pa·s.展开更多
Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layere...Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.展开更多
基金supported by the Research Fund Program of Institute of Seismology, Chinese Earthquake Administration (IS201226045)the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (SKLGED2013-3-7-E)the National Natural Science Foundation of China (41404065)
文摘The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.
基金Ministry of Science and Technology Project (2004CB418406).
文摘Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earth-quake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the MW=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-SW-142)the National Natural Science Foundation of China (41021003, 40974034 and90814009)the Key Project of Earthquake Science (201008007)
文摘Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.