期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water 被引量:3
1
作者 Guozhen Liu Yanan Guo +3 位作者 Baochun Meng Zhenggang Wang Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期260-266,共7页
Two-dimensional material membranes with fast transport channels and versatile chemical functionality are promising for molecular separation.Herein,for the first time,we reported design and engineering of two-dimension... Two-dimensional material membranes with fast transport channels and versatile chemical functionality are promising for molecular separation.Herein,for the first time,we reported design and engineering of two-dimensional Ti_(3)C_(2)Tx MXene(called transition metal carbides and nitrides)membranes supported on asymmetric polymeric hollow fiber substrate for water desalination.The membrane morphology,physicochemical properties and ions exclusion performance were systematically investigated.The results demonstrated that surface hydrophilicity and electrostatic repulsion and size sieving effect of interlayer channels synergistically endowed the MXene hollow fiber membrane with fast water permeation and efficient rejection of divalent ions during nanofiltration process. 展开更多
关键词 Two-dimensional material mxene membranes Hollow fiber DESALINATION NANOFILTRATION
下载PDF
Plasma‐oxidized 2D MXenes subnanochannel membrane for high‐performance osmotic energy conversion
2
作者 Zhengmao Ding Tiancheng Gu +5 位作者 Rui Zhang Shouyi Sun Kaiqiang Wang Hanli Zhang Jinjin Li Yunjun Luo 《Carbon Energy》 SCIE EI CAS 2024年第8期178-191,共14页
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene... Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2)in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting. 展开更多
关键词 ion transport mxenes membranes osmotic energy harvesting plasma two‐dimensional nanochannels
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部