Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In t...Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.展开更多
With OLYMPUS PMG3 metallograph, an abnormal three-layer gradient structure, i. e. coarse grain zone, binder enrichment zone and normal structure zone from surface to inner, was observed in Cr3C2 based cemented carbide...With OLYMPUS PMG3 metallograph, an abnormal three-layer gradient structure, i. e. coarse grain zone, binder enrichment zone and normal structure zone from surface to inner, was observed in Cr3C2 based cemented carbide. In the binder enrichment zone, three different shapes of anomalous coarse carbides were observed. It is shown that the transverse rupture strength can be raised remarkably, up 20.7%from the alloy with abnormal gradient structure by removing the abnormal gradient structure. The results suggested that the abnormal gradient structure in the surface, especially the anomalous coarse carbides in the binder enrichment zone is the main reason for the lower strength展开更多
Mo2C was prepared by microwave plasma chemical vapor deposition(MPCVD)technique with the power of 800 W and pressure of 18 kPa.Compared with traditional preparation methods,MPCVD has faster growth rate and higher puri...Mo2C was prepared by microwave plasma chemical vapor deposition(MPCVD)technique with the power of 800 W and pressure of 18 kPa.Compared with traditional preparation methods,MPCVD has faster growth rate and higher purity of the products.The influence of growth time on the morphology and structure of Mo_(2)C was characterized by X-ray diffraction and Scanning Electron Microscopy.The photocatalytic performance of Mo_(2)C was tested.It was found that Mo_(2)C had good photocatalytic performance and the 6 h sample had the highest photodegradation rate,indicating the great potential of Mo_(2)C as photocatalyst.展开更多
The morphology,microstructure and decomposition behavior of M2C carbides in high speed steels with different chemical compositions have been investigated by scanning electron microscopy,transmission electron microscop...The morphology,microstructure and decomposition behavior of M2C carbides in high speed steels with different chemical compositions have been investigated by scanning electron microscopy,transmission electron microscopy,electron backscatter diffraction and X-ray diffraction.The results show that the morphology and substructure of M2C carbides are very sensitive to chemical compositions of high speed steels.M2C carbides present the plate-like shape in tungsten-molybdenum steel and present the polycrystal orientation in the eutectic cell.In contrast,they show the fibrous shape in molybdenum-base steel and exhibit the monocrystal orientation.Plate-like and fibrous M2C carbides are both metastable and decompose into M6 C together with MC at high temperatures.MC nucleates inside the plate-like M2C while it is formed at the fibrous M2C/matrix interface during the decomposition process.Such differences are expected to arise from different compositions of plate-like and fibrous M2C carbides.展开更多
Grain growth inhibitors can effectively suppress the grain size of tungsten carbide(WC),and consequently improve the hardness and strength of the cemented carbides;however,the toughness,one of the most important prope...Grain growth inhibitors can effectively suppress the grain size of tungsten carbide(WC),and consequently improve the hardness and strength of the cemented carbides;however,the toughness,one of the most important properties,usually deteriorates with inhibitors.Here,(Cr,Mo,Ta)_(2)(C,N) synthesized by carbothermal reductionnitridation was used as a novel inhibitor,and its effects on the microstructure and mechanical properties of the cemented carbides were investigated.The results showed that the cemented carbides containing(Cr,Mo,Ta)_(2)(C,N)outperformed its counterpart comprising the traditional inhibitors in comprehensive mechanical properties,which was mainly attributed to the better inhibition performance provided by the(Cr,Mo,Ta)_(2)(C,N) solid-solution powders.With the content of(Cr,Mo,Ta)_(2)(C,N) increasing from 0 wt% to 1.25 wt%,the average grain size of WC in the cemented carbides decreased from 0.85 to 0.60 μm firstly,and then increased to 0.64 μm.With 1.00 wt%(Cr,Mo,-Ta)_(2)(C,N) addition,the cemented carbides with the best performance of hardness(HV_(30)) of 15.55 GPa,transverse rupture strength of 4272 MPa,fracture toughness of13.91 MPa·m1/2 were obtained.The electron backscattered diffraction(EBSD) measurements showed that cemented carbides with(Cr,Mo,Ta)_(2)(C,N) processed more amount of∑2 boundary compared with the other specimens,which contributed to better fracture resistance.展开更多
An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-...An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing.The intimately coupled Nb_(2)C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb_(2)C,which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process,but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons.As a result,Nb_(2)C/rGO-2 as the anode of potassium ion batteries(KIBs)delivers a large reversible specific capacity(301.7 mAh·g^(−1)after 500 cycles at 2.0 A·g^(−1)),an ultrahigh rate capability(155.5 mAh·g^(−1)at 20 A·g^(−1)),and an excellent long-term large-current cycle stability(198.8 mAh·g^(−1)after 1,000 cycles at 10 A·g^(−1),with a retention of 83.3%).Such a high-level electrochemical performance,especially the ultrahigh rate capability,is the best among transition metal carbides and nitride(MXene)-based materials reported so far for KIBs.The diffusion kinetics of K+is investigated thoroughly,and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb_(2)C/rGO are revealed explicitly.The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes.展开更多
基金Project supported by Fujian Science&Technology Innovation Laboratory for Energy Devices of China(21C-LAB)(Grant No.21C-OP-202013)the National Natural Science Foundation of China(Grant No.12064027)+1 种基金the International Science and Technology Cooperation Program of China(Grant No.2015DFA61800)the Scientific Research Fund of Jiangxi Provincial Education Department,China(Grant No.GJJ180973).
文摘Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.
文摘With OLYMPUS PMG3 metallograph, an abnormal three-layer gradient structure, i. e. coarse grain zone, binder enrichment zone and normal structure zone from surface to inner, was observed in Cr3C2 based cemented carbide. In the binder enrichment zone, three different shapes of anomalous coarse carbides were observed. It is shown that the transverse rupture strength can be raised remarkably, up 20.7%from the alloy with abnormal gradient structure by removing the abnormal gradient structure. The results suggested that the abnormal gradient structure in the surface, especially the anomalous coarse carbides in the binder enrichment zone is the main reason for the lower strength
基金Hubei Provincial Department of Education(Q20201512)。
文摘Mo2C was prepared by microwave plasma chemical vapor deposition(MPCVD)technique with the power of 800 W and pressure of 18 kPa.Compared with traditional preparation methods,MPCVD has faster growth rate and higher purity of the products.The influence of growth time on the morphology and structure of Mo_(2)C was characterized by X-ray diffraction and Scanning Electron Microscopy.The photocatalytic performance of Mo_(2)C was tested.It was found that Mo_(2)C had good photocatalytic performance and the 6 h sample had the highest photodegradation rate,indicating the great potential of Mo_(2)C as photocatalyst.
基金funded by National Natural Science Foundation of China(51301038,51371050)Industry-Academia-Research Program of Jiangsu Province of China(BY2014127-03)+2 种基金Natural Science Foundation of Jiangsu Province of China(BK20141306)Key Research Program of Jiangsu Province of China(BE2016154)Jiangsu Province Key Laboratory of High-end Structural Materials of China(hsm1404)
文摘The morphology,microstructure and decomposition behavior of M2C carbides in high speed steels with different chemical compositions have been investigated by scanning electron microscopy,transmission electron microscopy,electron backscatter diffraction and X-ray diffraction.The results show that the morphology and substructure of M2C carbides are very sensitive to chemical compositions of high speed steels.M2C carbides present the plate-like shape in tungsten-molybdenum steel and present the polycrystal orientation in the eutectic cell.In contrast,they show the fibrous shape in molybdenum-base steel and exhibit the monocrystal orientation.Plate-like and fibrous M2C carbides are both metastable and decompose into M6 C together with MC at high temperatures.MC nucleates inside the plate-like M2C while it is formed at the fibrous M2C/matrix interface during the decomposition process.Such differences are expected to arise from different compositions of plate-like and fibrous M2C carbides.
基金financially supported by the National Key Research and Development Plan of China(No.2017YFB0305900)the Sichuan Provincial Science Research Program of China(No.2017GZ0120)the Zigong/Sichuan University Science and Technology Cooperation Special Project(No.2018CDZG-14)。
文摘Grain growth inhibitors can effectively suppress the grain size of tungsten carbide(WC),and consequently improve the hardness and strength of the cemented carbides;however,the toughness,one of the most important properties,usually deteriorates with inhibitors.Here,(Cr,Mo,Ta)_(2)(C,N) synthesized by carbothermal reductionnitridation was used as a novel inhibitor,and its effects on the microstructure and mechanical properties of the cemented carbides were investigated.The results showed that the cemented carbides containing(Cr,Mo,Ta)_(2)(C,N)outperformed its counterpart comprising the traditional inhibitors in comprehensive mechanical properties,which was mainly attributed to the better inhibition performance provided by the(Cr,Mo,Ta)_(2)(C,N) solid-solution powders.With the content of(Cr,Mo,Ta)_(2)(C,N) increasing from 0 wt% to 1.25 wt%,the average grain size of WC in the cemented carbides decreased from 0.85 to 0.60 μm firstly,and then increased to 0.64 μm.With 1.00 wt%(Cr,Mo,-Ta)_(2)(C,N) addition,the cemented carbides with the best performance of hardness(HV_(30)) of 15.55 GPa,transverse rupture strength of 4272 MPa,fracture toughness of13.91 MPa·m1/2 were obtained.The electron backscattered diffraction(EBSD) measurements showed that cemented carbides with(Cr,Mo,Ta)_(2)(C,N) processed more amount of∑2 boundary compared with the other specimens,which contributed to better fracture resistance.
基金National Key R&D Program of China(2017YFB0305202)Inner Mongolia Natural Science Foundation(2016MS0510,2020MS05046)+1 种基金Key Technology Research Program of Inner Mongolia Autonomous Region(2021GG0047)Basic Scientific Research Business Cost Project of Colleges and Universities Directly Under the Inner Mongolia Autonomous Region in 2023。
基金the National Natural Science Foundation of China(No.21773116)and Modern Analysis Center of Nanjing University.
文摘An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing.The intimately coupled Nb_(2)C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb_(2)C,which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process,but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons.As a result,Nb_(2)C/rGO-2 as the anode of potassium ion batteries(KIBs)delivers a large reversible specific capacity(301.7 mAh·g^(−1)after 500 cycles at 2.0 A·g^(−1)),an ultrahigh rate capability(155.5 mAh·g^(−1)at 20 A·g^(−1)),and an excellent long-term large-current cycle stability(198.8 mAh·g^(−1)after 1,000 cycles at 10 A·g^(−1),with a retention of 83.3%).Such a high-level electrochemical performance,especially the ultrahigh rate capability,is the best among transition metal carbides and nitride(MXene)-based materials reported so far for KIBs.The diffusion kinetics of K+is investigated thoroughly,and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb_(2)C/rGO are revealed explicitly.The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes.