BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC...BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.展开更多
Although aqueous zinc-ion batteries have gained great development due to their many merits,the frozen aqueous electrolyte hinders their practical application at low temperature conditions.Here,the synergistic e ect of...Although aqueous zinc-ion batteries have gained great development due to their many merits,the frozen aqueous electrolyte hinders their practical application at low temperature conditions.Here,the synergistic e ect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization.Then,an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO_(4))_(2)+1 M Zn(ClO_(4))_(2)is proposed and displays an ultralow freezing point of-121℃.A high ionic conductivity of 1.41 mS cm-1 and low viscosity of 22.9 mPa s at-70℃ imply a fast ions transport behavior of this electrolyte.With the benefits of the low-temperature electrolyte,the fabricated Zn||Pyrene-4,5,9,10-tetraone(PTO)and Zn||Phenazine(PNZ)batteries exhibit satisfactory low-temperature performance.For example,Zn||PTO battery shows a high discharge capacity of 101.5 mAh g^(-1)at 0.5 C(200 mA g^(-1))and 71 mAh g^(-1)at 3C(1.2 A g^(-1))when the temperature drops to-70℃.This work provides an unique view to design anti-freezing aqueous electrolyte.展开更多
Autoreactive CD8^(+)T cells,which play an indispensable role inβcell destruction,represent an emerging target for the prevention of type 1 diabetes(T1D).Altered peptide ligands(APLs)can efficiently induce antigen-spe...Autoreactive CD8^(+)T cells,which play an indispensable role inβcell destruction,represent an emerging target for the prevention of type 1 diabetes(T1D).Altered peptide ligands(APLs)can efficiently induce antigen-specific T cells anergy,apoptosis or shifts in the immune response.Here,we found that HLA-A*0201-restricted CD8^(+)T cell responses against a primaryβ-cell autoantigen insulin epitope InsB15–14 were present in both NOD.β2m null.HHD NOD mice and T1D patients.We generated several APL candidates for InsB15–14 by residue substitution at the p6 position.Only H6F exhibited an inhibitory effect on mInsB1_(5–14)-specific CD8^(+)T cell responses in vitro.H6F treatment significantly reduced the T1D incidence,which was accompanied by diminished autoreactive CD8^(+)T cell responses to mInsB15-14,inhibited infiltration of CD8^(+)and CD4^(+)T cells in the pancreas and reduced pro-inflammatory cytokine production in pancreatic and splenic T cells in NOD.β2m^(null).HHD mice.Mechanistically,H6F treatment significantly augmented a tiny portion of CD8^(+)CD25^(+)Foxp3^(+)T cells in the spleen and especially in the pancreas.This subset exhibited typical Treg phenotypes and required peptide-specific restimulation to exert immunosuppressive activity.Therefore,this APL H6F may be a promising candidate with potential clinical application value for antigen-specific prevention of T1D.展开更多
This paper demonstrates the structural, vibrational and photoluminescence characteristics of(ZnO)(VO)(x = 0, 3, 6 and 9 mol%) composites semiconductor synthesized by using the solid state reaction method. X-ray diffra...This paper demonstrates the structural, vibrational and photoluminescence characteristics of(ZnO)(VO)(x = 0, 3, 6 and 9 mol%) composites semiconductor synthesized by using the solid state reaction method. X-ray diffraction(XRD) studies show that(ZnO)(VO)composites have the poly crystalline wurtzite structure of hexagonal Zn O. It is found from the XRD results that the lattice constants and the crystallite size increase while the dislocation density decreases with increase in doping concentration. The existence of E1(TO) and E2(high) Raman modes show that the Zn O still preserve wurtzite structure after doping vanadium oxide, which is in agreement with XRD results. Room temperature photoluminescence(PL) exhibit near band edge and broad deep level emission while indicating the suppression of deep level emission with the incorporation of VOup to a certain concentration(x < 9). Moreover, the optical band gap increase with doping, which is accompanied by the blue shift of the NBE emission.展开更多
文摘BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.
基金supported the National Natural Science Foundation of China(51771094 and 21835004)Ministry of Education of China(B12015)Tianjin Natural Science Foundation(18JCZDJC31500)。
文摘Although aqueous zinc-ion batteries have gained great development due to their many merits,the frozen aqueous electrolyte hinders their practical application at low temperature conditions.Here,the synergistic e ect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization.Then,an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO_(4))_(2)+1 M Zn(ClO_(4))_(2)is proposed and displays an ultralow freezing point of-121℃.A high ionic conductivity of 1.41 mS cm-1 and low viscosity of 22.9 mPa s at-70℃ imply a fast ions transport behavior of this electrolyte.With the benefits of the low-temperature electrolyte,the fabricated Zn||Pyrene-4,5,9,10-tetraone(PTO)and Zn||Phenazine(PNZ)batteries exhibit satisfactory low-temperature performance.For example,Zn||PTO battery shows a high discharge capacity of 101.5 mAh g^(-1)at 0.5 C(200 mA g^(-1))and 71 mAh g^(-1)at 3C(1.2 A g^(-1))when the temperature drops to-70℃.This work provides an unique view to design anti-freezing aqueous electrolyte.
基金supported by the National Natural Science Foundation of China(No.31570931 and No.31771002)the National Key Project for Research&Development of China(Grant no.2016YFA0502204).
文摘Autoreactive CD8^(+)T cells,which play an indispensable role inβcell destruction,represent an emerging target for the prevention of type 1 diabetes(T1D).Altered peptide ligands(APLs)can efficiently induce antigen-specific T cells anergy,apoptosis or shifts in the immune response.Here,we found that HLA-A*0201-restricted CD8^(+)T cell responses against a primaryβ-cell autoantigen insulin epitope InsB15–14 were present in both NOD.β2m null.HHD NOD mice and T1D patients.We generated several APL candidates for InsB15–14 by residue substitution at the p6 position.Only H6F exhibited an inhibitory effect on mInsB1_(5–14)-specific CD8^(+)T cell responses in vitro.H6F treatment significantly reduced the T1D incidence,which was accompanied by diminished autoreactive CD8^(+)T cell responses to mInsB15-14,inhibited infiltration of CD8^(+)and CD4^(+)T cells in the pancreas and reduced pro-inflammatory cytokine production in pancreatic and splenic T cells in NOD.β2m^(null).HHD mice.Mechanistically,H6F treatment significantly augmented a tiny portion of CD8^(+)CD25^(+)Foxp3^(+)T cells in the spleen and especially in the pancreas.This subset exhibited typical Treg phenotypes and required peptide-specific restimulation to exert immunosuppressive activity.Therefore,this APL H6F may be a promising candidate with potential clinical application value for antigen-specific prevention of T1D.
文摘This paper demonstrates the structural, vibrational and photoluminescence characteristics of(ZnO)(VO)(x = 0, 3, 6 and 9 mol%) composites semiconductor synthesized by using the solid state reaction method. X-ray diffraction(XRD) studies show that(ZnO)(VO)composites have the poly crystalline wurtzite structure of hexagonal Zn O. It is found from the XRD results that the lattice constants and the crystallite size increase while the dislocation density decreases with increase in doping concentration. The existence of E1(TO) and E2(high) Raman modes show that the Zn O still preserve wurtzite structure after doping vanadium oxide, which is in agreement with XRD results. Room temperature photoluminescence(PL) exhibit near band edge and broad deep level emission while indicating the suppression of deep level emission with the incorporation of VOup to a certain concentration(x < 9). Moreover, the optical band gap increase with doping, which is accompanied by the blue shift of the NBE emission.