[Objective] To investigate the annual variation of 9 mineral nutrition ele-ments content in Macadamia integrifolia leaves. [Method] Twenty 6-year-old "Guire No. 1" healthy plants were selected. On the 15th...[Objective] To investigate the annual variation of 9 mineral nutrition ele-ments content in Macadamia integrifolia leaves. [Method] Twenty 6-year-old "Guire No. 1" healthy plants were selected. On the 15th of every month in 2011, 1 leaf in the second round from top-branch in 4 directions of the 20 trees was col ected. The content of 9 mineral elements of N, P, K, Ca, Mg, Zn, Cu, Fe and Mn were deter-mined. [Result] The results showed that the N, P, K content in leaves reached a peak in April, then N content decreased slowly, P content stayed stable, and K con-tent increased slightly; Ca, Fe content decreased in April to different degrees and then increased slowly. Mg content was consistent al year round, meanwhile Mn content decreased slightly. Cu and Zn content reached a peak in April, and then presented a rise-fal trend. [Conclusion] N, K, Ca, Mg should be supplemented in time in practice.展开更多
The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These t...The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.展开更多
基金Supported By Guangxi Sci-Tech Achievements International Cooperation Project(1140013-5)Non-profit Basic Research Project of Guangxi Zhuang Autonomous Region(GXNYRKS201406)~~
文摘[Objective] To investigate the annual variation of 9 mineral nutrition ele-ments content in Macadamia integrifolia leaves. [Method] Twenty 6-year-old "Guire No. 1" healthy plants were selected. On the 15th of every month in 2011, 1 leaf in the second round from top-branch in 4 directions of the 20 trees was col ected. The content of 9 mineral elements of N, P, K, Ca, Mg, Zn, Cu, Fe and Mn were deter-mined. [Result] The results showed that the N, P, K content in leaves reached a peak in April, then N content decreased slowly, P content stayed stable, and K con-tent increased slightly; Ca, Fe content decreased in April to different degrees and then increased slowly. Mg content was consistent al year round, meanwhile Mn content decreased slightly. Cu and Zn content reached a peak in April, and then presented a rise-fal trend. [Conclusion] N, K, Ca, Mg should be supplemented in time in practice.
文摘The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.