Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource...Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR).展开更多
Virtual machine(VM)consolidation is an effective way to improve resource utilization and reduce energy consumption in cloud data centers.Most existing studies have considered VM consolidation as a bin-packing problem,...Virtual machine(VM)consolidation is an effective way to improve resource utilization and reduce energy consumption in cloud data centers.Most existing studies have considered VM consolidation as a bin-packing problem,but the current schemes commonly ignore the long-term relationship between VMs and hosts.In addition,there is a lack of long-term consideration for resource optimization in the VM consolidation,which results in unnecessary VM migration and increased energy consumption.To address these limitations,a VM consolidation method based on multi-step prediction and affinity-aware technique for energy-efficient cloud data centers(MPaAF-VMC)is proposed.The proposed method uses an improved linear regression prediction algorithm to predict the next-moment resource utilization of hosts and VMs,and obtains the stage demand of resources in the future period through multi-step prediction,which is realized by iterative prediction.Then,based on the multi-step prediction,an affinity model between the VM and host is designed using the first-order correlation coefficient and Euclidean distance.During the VM consolidation,the affinity value is used to select the migration VM and placement host.The proposed method is compared with the existing consolidation algorithms on the PlanetLab and Google cluster real workload data using the CloudSim simulation platform.Experimental results show that the proposed method can achieve significant improvement in reducing energy consumption,VM migration costs,and service level agreement(SLA)violations.展开更多
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and im...With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.展开更多
Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better ...Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better to envisage the upcoming workload for early detection of overload status,underload status and to trigger the migration at an appropriate point wherein enough number of resources are available.Though various statistical and machine learning approaches are widely applied for resource usage prediction,they often failed to handle the increase of non-linear CDC data.To overcome this issue,a novel Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory(CDB-LSTM)model is proposed.The CDB-LSTM adopts Helly property of Hypergraph and Savitzky–Golay(SG)filter to select informative samples and exclude noisy inference&outliers.The proposed approach optimizes resource usage prediction and reduces the number of migrations with minimal computa-tional complexity during live VM migration.Further,the proposed prediction approach implements the correlation co-efficient measure to select the appropriate destination server for VM migration.A Hypergraph based CDB-LSTM was vali-dated using Google cluster dataset and compared with state-of-the-art approaches in terms of various evaluation metrics.展开更多
Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing ...Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing vessel monitoring system(VMS)can monitor and record the navigation information of fishing vessels in real time,and it may be used to improve the accuracy of identifying the state of fishing vessels.If the VMS data and fishing logbook are combined to establish their relationships,then the navigation characteristics and fishing behavior of fishing vessels can be more accurately identified.Therefore,first,a method for determining the state of VMS data points using fishing log data was proposed.Secondly,the relationship between VMS data and the different states of fishing vessels was further explored.Thirdly,the state of the fishing vessel was predicted using VMS data by building machine learning models.The speed,heading,longitude,latitude,and time as features from the VMS data were extracted by matching the VMS and logbook data of three single otter trawl vessels from September 2012 to January 2013,and four machine learning models were established,i.e.,Random Forest(RF),Adaptive Boosting(AdaBoost),K-Nearest Neighbor(KNN),and Gradient Boosting Decision Tree(GBDT)to predict the behavior of fishing vessels.The prediction performances of the models were evaluated by using normalized confusion matrix and receiver operator characteristic curve.Results show that the importance rankings of spatial(longitude and latitude)and time features were higher than those of speed and heading.The prediction performances of the RF and AdaBoost models were higher than those of the KNN and GBDT models.RF model showed the highest prediction performance for fishing state.Meanwhile,AdaBoost model exhibited the highest prediction performance for non-fishing state.This study offered a technical basis for judging the navigation characteristics of fishing vessels,which improved the algorithm for judging the behavior of fishing vessels based on VMS data,enhanced the prediction accuracy,and upgraded the fishery management being more scientific and efficient.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o...Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
Cloud computing promises the advent of a new era of service boosted by means of virtualization technology.The process of virtualization means creation of virtual infrastructure,devices,servers and computing resources ...Cloud computing promises the advent of a new era of service boosted by means of virtualization technology.The process of virtualization means creation of virtual infrastructure,devices,servers and computing resources needed to deploy an application smoothly.This extensively practiced technology involves selecting an efficient Virtual Machine(VM)to complete the task by transferring applications from Physical Machines(PM)to VM or from VM to VM.The whole process is very challenging not only in terms of computation but also in terms of energy and memory.This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres.Machine Learning(ML)based Artificial Bee Colony(ABC)is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter.The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy,applications are migrated fromoneVMto another.The simulation analysis is performed inMatlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies.展开更多
基金funded by Science and Technology Department of Shaanxi Province,Grant Numbers:2019GY-020 and 2024JC-YBQN-0730.
文摘Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR).
基金supported by the National Natural Science Foundation of China(62172089,61972087,62172090).
文摘Virtual machine(VM)consolidation is an effective way to improve resource utilization and reduce energy consumption in cloud data centers.Most existing studies have considered VM consolidation as a bin-packing problem,but the current schemes commonly ignore the long-term relationship between VMs and hosts.In addition,there is a lack of long-term consideration for resource optimization in the VM consolidation,which results in unnecessary VM migration and increased energy consumption.To address these limitations,a VM consolidation method based on multi-step prediction and affinity-aware technique for energy-efficient cloud data centers(MPaAF-VMC)is proposed.The proposed method uses an improved linear regression prediction algorithm to predict the next-moment resource utilization of hosts and VMs,and obtains the stage demand of resources in the future period through multi-step prediction,which is realized by iterative prediction.Then,based on the multi-step prediction,an affinity model between the VM and host is designed using the first-order correlation coefficient and Euclidean distance.During the VM consolidation,the affinity value is used to select the migration VM and placement host.The proposed method is compared with the existing consolidation algorithms on the PlanetLab and Google cluster real workload data using the CloudSim simulation platform.Experimental results show that the proposed method can achieve significant improvement in reducing energy consumption,VM migration costs,and service level agreement(SLA)violations.
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61272200, 10805019)the Program for Excellent Young Teachers in Higher Education of Guangdong, China (No. Yq2013012)+2 种基金the Fundamental Research Funds for the Central Universities (2015ZJ010)the Special Support Program of Guangdong Province (201528004)the Pearl River Science & Technology Star Project (201610010046)
文摘With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.
文摘Live Virtual Machine(VM)migration is one of the foremost techniques for progressing Cloud Data Centers’(CDC)proficiency as it leads to better resource usage.The workload of CDC is often dynamic in nature,it is better to envisage the upcoming workload for early detection of overload status,underload status and to trigger the migration at an appropriate point wherein enough number of resources are available.Though various statistical and machine learning approaches are widely applied for resource usage prediction,they often failed to handle the increase of non-linear CDC data.To overcome this issue,a novel Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory(CDB-LSTM)model is proposed.The CDB-LSTM adopts Helly property of Hypergraph and Savitzky–Golay(SG)filter to select informative samples and exclude noisy inference&outliers.The proposed approach optimizes resource usage prediction and reduces the number of migrations with minimal computa-tional complexity during live VM migration.Further,the proposed prediction approach implements the correlation co-efficient measure to select the appropriate destination server for VM migration.A Hypergraph based CDB-LSTM was vali-dated using Google cluster dataset and compared with state-of-the-art approaches in terms of various evaluation metrics.
基金Supported by the Public Welfare Technology Application Research Project of China(No.LGN21C190009)the Science and Technology Project of Zhoushan Municipality,Zhejiang Province(No.2022C41003)。
文摘Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing vessel monitoring system(VMS)can monitor and record the navigation information of fishing vessels in real time,and it may be used to improve the accuracy of identifying the state of fishing vessels.If the VMS data and fishing logbook are combined to establish their relationships,then the navigation characteristics and fishing behavior of fishing vessels can be more accurately identified.Therefore,first,a method for determining the state of VMS data points using fishing log data was proposed.Secondly,the relationship between VMS data and the different states of fishing vessels was further explored.Thirdly,the state of the fishing vessel was predicted using VMS data by building machine learning models.The speed,heading,longitude,latitude,and time as features from the VMS data were extracted by matching the VMS and logbook data of three single otter trawl vessels from September 2012 to January 2013,and four machine learning models were established,i.e.,Random Forest(RF),Adaptive Boosting(AdaBoost),K-Nearest Neighbor(KNN),and Gradient Boosting Decision Tree(GBDT)to predict the behavior of fishing vessels.The prediction performances of the models were evaluated by using normalized confusion matrix and receiver operator characteristic curve.Results show that the importance rankings of spatial(longitude and latitude)and time features were higher than those of speed and heading.The prediction performances of the RF and AdaBoost models were higher than those of the KNN and GBDT models.RF model showed the highest prediction performance for fishing state.Meanwhile,AdaBoost model exhibited the highest prediction performance for non-fishing state.This study offered a technical basis for judging the navigation characteristics of fishing vessels,which improved the algorithm for judging the behavior of fishing vessels based on VMS data,enhanced the prediction accuracy,and upgraded the fishery management being more scientific and efficient.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
基金supported by the National Natural Science Foundation of China(6120235461272422)the Scientific and Technological Support Project(Industry)of Jiangsu Province(BE2011189)
文摘Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
文摘Cloud computing promises the advent of a new era of service boosted by means of virtualization technology.The process of virtualization means creation of virtual infrastructure,devices,servers and computing resources needed to deploy an application smoothly.This extensively practiced technology involves selecting an efficient Virtual Machine(VM)to complete the task by transferring applications from Physical Machines(PM)to VM or from VM to VM.The whole process is very challenging not only in terms of computation but also in terms of energy and memory.This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres.Machine Learning(ML)based Artificial Bee Colony(ABC)is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter.The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy,applications are migrated fromoneVMto another.The simulation analysis is performed inMatlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies.