Face recognition systems have enhanced human-computer interactions in the last ten years.However,the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations.Pri...Face recognition systems have enhanced human-computer interactions in the last ten years.However,the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations.Principal Component Analysis-Support Vector Machine(PCA-SVM)and Principal Component Analysis-Artificial Neural Network(PCA-ANN)are among the relatively recent and powerful face analysis techniques.Compared to PCA-ANN,PCA-SVM has demonstrated generalization capabilities in many tasks,including the ability to recognize objects with small or large data samples.Apart from requiring a minimal number of parameters in face detection,PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN.PCA-SVM,however,is ineffective and inefficient in detecting human faces in cases in which there is poor lighting,long hair,or items covering the subject’s face.This study proposes a novel PCASVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection.The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.展开更多
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ...Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple.展开更多
Machine Learning(ML)-based prediction and classification systems employ data and learning algorithms to forecast target values.However,improving predictive accuracy is a crucial step for informed decision-making.In th...Machine Learning(ML)-based prediction and classification systems employ data and learning algorithms to forecast target values.However,improving predictive accuracy is a crucial step for informed decision-making.In the healthcare domain,data are available in the form of genetic profiles and clinical characteristics to build prediction models for complex tasks like cancer detection or diagnosis.Among ML algorithms,Artificial Neural Networks(ANNs)are considered the most suitable framework for many classification tasks.The network weights and the activation functions are the two crucial elements in the learning process of an ANN.These weights affect the prediction ability and the convergence efficiency of the network.In traditional settings,ANNs assign random weights to the inputs.This research aims to develop a learning system for reliable cancer prediction by initializing more realistic weights computed using a supervised setting instead of random weights.The proposed learning system uses hybrid and traditional machine learning techniques such as Support Vector Machine(SVM),Linear Discriminant Analysis(LDA),Random Forest(RF),k-Nearest Neighbour(kNN),and ANN to achieve better accuracy in colon and breast cancer classification.This system computes the confusion matrix-based metrics for traditional and proposed frameworks.The proposed framework attains the highest accuracy of 89.24 percent using the colon cancer dataset and 72.20 percent using the breast cancer dataset,which outperforms the other models.The results show that the proposed learning system has higher predictive accuracies than conventional classifiers for each dataset,overcoming previous research limitations.Moreover,the proposed framework is of use to predict and classify cancer patients accurately.Consequently,this will facilitate the effective management of cancer patients.展开更多
In this paper,the recently developed machine learning(ML)approach to improve orbit prediction accuracy is systematically investigated using three ML algorithms,including support vector machine(SVM),artificial neural n...In this paper,the recently developed machine learning(ML)approach to improve orbit prediction accuracy is systematically investigated using three ML algorithms,including support vector machine(SVM),artificial neural network(ANN),and Gaussian processes(GPs).In a simulation environment consisting of orbit propagation,measurement,estimation,and prediction processes,totally 12 resident space objects(RSOs)in solar-synchronous orbit(SSO),low Earth orbit(LEO),and medium Earth orbit(MEO)are simulated to compare the performance of three ML algorithms.The results in this paper show that ANN usually has the best approximation capability but is easiest to overfit data;SVM is the least likely to overfit but the performance usually cannot surpass ANN and GPs.Additionally,the ML approach with all the three algorithms is observed to be robust with respect to the measurement noise.展开更多
The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships amon...The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships among the underlying input variables of the datasets to which it is applied.It also has the capability to achieve credible and auditable levels of prediction accuracy to complex,non-linear datasets,typical of those encountered in the oil and gas sector,highlighting the potential for underfitting and overfitting.The algorithm is applied here to predict bubble-point pressure from a published PVT dataset of 166 data records involving four easy-tomeasure variables(reservoir temperature,gas-oil ratio,oil gravity,gas density relative to air)with uneven,and in parts,sparse data coverage.The TOB network demonstrates high-prediction accuracy for this complex system,although it predictions applied to the full dataset are outperformed by an artificial neural network(ANN).However,the performance of the TOB algorithm reveals the risk of overfitting in the sparse areas of the dataset and achieves a prediction performance that matches the ANN algorithm where the underlying data population is adequate.The high levels of transparency and its inhibitions to overfitting enable the TOB learning network to provide complementary information about the underlying dataset to that provided by traditional machine learning algorithms.This makes them suitable for application in parallel with neural-network algorithms,to overcome their black-box tendencies,and for benchmarking the prediction performance of other machine learning algorithms.展开更多
Soft Tissue Tumors(STT)are a form of sarcoma found in tissues that connect,support,and surround body structures.Because of their shallow frequency in the body and their great diversity,they appear to be heterogeneous ...Soft Tissue Tumors(STT)are a form of sarcoma found in tissues that connect,support,and surround body structures.Because of their shallow frequency in the body and their great diversity,they appear to be heterogeneous when observed through Magnetic Resonance Imaging(MRI).They are easily confused with other diseases such as fibroadenoma mammae,lymphadenopathy,and struma nodosa,and these diagnostic errors have a considerable detrimental effect on the medical treatment process of patients.Researchers have proposed several machine learning models to classify tumors,but none have adequately addressed this misdiagnosis problem.Also,similar studies that have proposed models for evaluation of such tumors mostly do not consider the heterogeneity and the size of the data.Therefore,we propose a machine learning-based approach which combines a new technique of preprocessing the data for features transformation,resampling techniques to eliminate the bias and the deviation of instability and performing classifier tests based on the Support Vector Machine(SVM)and Decision Tree(DT)algorithms.The tests carried out on dataset collected in Nur Hidayah Hospital of Yogyakarta in Indonesia show a great improvement compared to previous studies.These results confirm that machine learning methods could provide efficient and effective tools to reinforce the automatic decision-making processes of STT diagnostics.展开更多
文摘Face recognition systems have enhanced human-computer interactions in the last ten years.However,the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations.Principal Component Analysis-Support Vector Machine(PCA-SVM)and Principal Component Analysis-Artificial Neural Network(PCA-ANN)are among the relatively recent and powerful face analysis techniques.Compared to PCA-ANN,PCA-SVM has demonstrated generalization capabilities in many tasks,including the ability to recognize objects with small or large data samples.Apart from requiring a minimal number of parameters in face detection,PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN.PCA-SVM,however,is ineffective and inefficient in detecting human faces in cases in which there is poor lighting,long hair,or items covering the subject’s face.This study proposes a novel PCASVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection.The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.
基金supported by the West Light Foundation of the Chinese Academy of Sciences
文摘Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple.
文摘Machine Learning(ML)-based prediction and classification systems employ data and learning algorithms to forecast target values.However,improving predictive accuracy is a crucial step for informed decision-making.In the healthcare domain,data are available in the form of genetic profiles and clinical characteristics to build prediction models for complex tasks like cancer detection or diagnosis.Among ML algorithms,Artificial Neural Networks(ANNs)are considered the most suitable framework for many classification tasks.The network weights and the activation functions are the two crucial elements in the learning process of an ANN.These weights affect the prediction ability and the convergence efficiency of the network.In traditional settings,ANNs assign random weights to the inputs.This research aims to develop a learning system for reliable cancer prediction by initializing more realistic weights computed using a supervised setting instead of random weights.The proposed learning system uses hybrid and traditional machine learning techniques such as Support Vector Machine(SVM),Linear Discriminant Analysis(LDA),Random Forest(RF),k-Nearest Neighbour(kNN),and ANN to achieve better accuracy in colon and breast cancer classification.This system computes the confusion matrix-based metrics for traditional and proposed frameworks.The proposed framework attains the highest accuracy of 89.24 percent using the colon cancer dataset and 72.20 percent using the breast cancer dataset,which outperforms the other models.The results show that the proposed learning system has higher predictive accuracies than conventional classifiers for each dataset,overcoming previous research limitations.Moreover,the proposed framework is of use to predict and classify cancer patients accurately.Consequently,this will facilitate the effective management of cancer patients.
基金The authors would acknowledge the research support from the Air Force Office of Scientific Research(AFOSR)FA9550-16-1-0184 and the Office of Naval Research(ONR)N00014-16-1-2729.Large amount of simulations of RSOs have been supported by the HPC cluster in School of Engineering,Rutgers University.
文摘In this paper,the recently developed machine learning(ML)approach to improve orbit prediction accuracy is systematically investigated using three ML algorithms,including support vector machine(SVM),artificial neural network(ANN),and Gaussian processes(GPs).In a simulation environment consisting of orbit propagation,measurement,estimation,and prediction processes,totally 12 resident space objects(RSOs)in solar-synchronous orbit(SSO),low Earth orbit(LEO),and medium Earth orbit(MEO)are simulated to compare the performance of three ML algorithms.The results in this paper show that ANN usually has the best approximation capability but is easiest to overfit data;SVM is the least likely to overfit but the performance usually cannot surpass ANN and GPs.Additionally,the ML approach with all the three algorithms is observed to be robust with respect to the measurement noise.
文摘The transparent open box(TOB)learning network algorithm offers an alternative approach to the lack of transparency provided by most machine-learning algorithms.It provides the exact calculations and relationships among the underlying input variables of the datasets to which it is applied.It also has the capability to achieve credible and auditable levels of prediction accuracy to complex,non-linear datasets,typical of those encountered in the oil and gas sector,highlighting the potential for underfitting and overfitting.The algorithm is applied here to predict bubble-point pressure from a published PVT dataset of 166 data records involving four easy-tomeasure variables(reservoir temperature,gas-oil ratio,oil gravity,gas density relative to air)with uneven,and in parts,sparse data coverage.The TOB network demonstrates high-prediction accuracy for this complex system,although it predictions applied to the full dataset are outperformed by an artificial neural network(ANN).However,the performance of the TOB algorithm reveals the risk of overfitting in the sparse areas of the dataset and achieves a prediction performance that matches the ANN algorithm where the underlying data population is adequate.The high levels of transparency and its inhibitions to overfitting enable the TOB learning network to provide complementary information about the underlying dataset to that provided by traditional machine learning algorithms.This makes them suitable for application in parallel with neural-network algorithms,to overcome their black-box tendencies,and for benchmarking the prediction performance of other machine learning algorithms.
文摘Soft Tissue Tumors(STT)are a form of sarcoma found in tissues that connect,support,and surround body structures.Because of their shallow frequency in the body and their great diversity,they appear to be heterogeneous when observed through Magnetic Resonance Imaging(MRI).They are easily confused with other diseases such as fibroadenoma mammae,lymphadenopathy,and struma nodosa,and these diagnostic errors have a considerable detrimental effect on the medical treatment process of patients.Researchers have proposed several machine learning models to classify tumors,but none have adequately addressed this misdiagnosis problem.Also,similar studies that have proposed models for evaluation of such tumors mostly do not consider the heterogeneity and the size of the data.Therefore,we propose a machine learning-based approach which combines a new technique of preprocessing the data for features transformation,resampling techniques to eliminate the bias and the deviation of instability and performing classifier tests based on the Support Vector Machine(SVM)and Decision Tree(DT)algorithms.The tests carried out on dataset collected in Nur Hidayah Hospital of Yogyakarta in Indonesia show a great improvement compared to previous studies.These results confirm that machine learning methods could provide efficient and effective tools to reinforce the automatic decision-making processes of STT diagnostics.