With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that...With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools.展开更多
In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish ...In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.展开更多
In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized ...In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized by high strength-to-mass ratios, minimal stowage volume, which makes them suitable for cost-effective large space structures. A typical example for the inflatable structure is the inflated torus which often used in order to provide structure support. In this study, our main focus is to understand the dynamic characteristics of an inflated torus in order to formulate an accurate mathematical model suitable for active vibration control applications. A commercial finite element package, ANSYS, is used to model the inflated torus. To verify the model the obtained frequencies and mode shapes are compared with the published results, which are derived using analytical approach, the verification shows a good agreement between the FEM and the analytical results. Based on the verified model, parametric study was investigated; the material thickness increase causes the natural frequencies decrease, while the increase of the inflation pressure simply results in stiffening the ring, which means that the natural frequency increased. The FEM analysis gives an easy and fast way for the vibration analysis of the structures compared with the complicated analytical solutions.展开更多
In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are thos...In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are those which are thermally induced which are from internal and external heat sources acting on the machine. In this paper, a methodology for determining and analyzing the thermal deformation of machine tools using FEM (finite element method) and ANN (artificial neural networks) is presented. After modeling the machine using FEM is defined the location of the heat sources, it is possible to obtain the temperature gradient and the corresponding thermal deformation at predetermined periods. Results obtained with simulations using the software NX.7.5 showed that this methodology is an effective tool in determining the thermal deformation of the machine, correlating the temperature reading at strategic points with volumetric deformation at the tool tip. Therefore, the thermal analysis of the errors in the pair tool part can be established. After training and validation process, the network will be able to make the prediction of thermal errors just stating the temperature values of specific points of each heat source, providing a way for compensation of thermally induced errors.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
The milling-head machine tool is a sophisticated and high-quality machine tool of which the spindle system is made up of special multi-element structure. Two special mechanical configurations make the cutting performa...The milling-head machine tool is a sophisticated and high-quality machine tool of which the spindle system is made up of special multi-element structure. Two special mechanical configurations make the cutting performance of the machine tool decline. One is the milling head spindle supported on two sets of complex bearings. The mechanical dynamic rigidity of milling head structure is researched on designed digital prototype with finite element analysis(FEA) and modal synthesis analysis ( MSA ) for identifying the weak structures. The other is the ram structure hanging on milling head. The structure is researched to get dynamic performance on cutting at different ram extending positions. The analysis results on spindle and ram are used to improve the mechanical configurations and structure in design. The machine tool is built up with modified structure and gets better dynamic rigidity than it was before.展开更多
In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix...In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.展开更多
A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wi...A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.展开更多
The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track ...The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track slab and bridge structure.In order to study the impact of the interface crack on the dynamic response of CRTSⅢballastless track system on bridge,based on the principle of multi-body dynamics theory and ANSYS+SIMPACK co-simulation,the spatial model of vehicle-track-bridge integration considering the longitudinal stiffness of supports,the track structure and interlayer contact characteristics were established.The dynamic characteristics of the system under different conditions of the width,length and position of the interface crack were analysed,and the limited values of the length and width of the cracks at the track slab edge were proposed.The results show that when the self-compacting concrete does not completely void along the transverse direction of the track slab,the crack has little effect on the dynamic characteristics of the vehicle-track-bridge system.However,when the self-compacting concrete is completely hollowed out along the transverse direction of the track slab,the dynamic amplitudes of the system increase.When the crack length is 1.6 m,the wheel load reduction rate reaches 0.769,which exceeds the limit value and threatens the safety of train operation.The vertical acceleration of the track slab increases by 250.1%,which affects the service life of the track system under the train speed of 200 km/h.展开更多
Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a ...Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a clapper relay in a uniform static magnetic field situation based on the finite element method (FEM) is studied. Influences of the magnetic field on dynamic parameters (delay time, pick-up time, end pressure, and final velocity) as well as a situation in which the relay cannot function normally are analyzed. Simulation reveals that the external magnetic field which weakens the relay’s air-gap field has a greater influence on the relay’s dynamic parameters than the one strengthening the field. The validity of the simulation is verified by measured results of coil current and armature displacement.展开更多
In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p...In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs.展开更多
In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate...In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate the local vibration modes in order to obtain the whole ship's mode shapes. In the post-processor, a lot of accessorial methods are adopted to eliminate the local vibrations, so that the whole ship's mode shapes can be identified. The modal analysis indicates that the dynamic reduction method fits for mode shapes identifying. In the end,the test results of a catamaran named Frederick G. Greed are used for reference to validate the obtained results. The comparison process shows that the results are credible. A special mode shape, which is quite different with that of conventional monohull ship, is also pointed out. The obtained results provide a valuable reference for the coming computation of catamaran's vihration characteristics.展开更多
The dynamic characteristic parameters of Up-time of Flight Counter (U-ToFC) are important for research of structure optimization and reliability. However, the current simulation is performed based on homogenous mate...The dynamic characteristic parameters of Up-time of Flight Counter (U-ToFC) are important for research of structure optimization and reliability. However, the current simulation is performed based on homogenous material and simplified constraint model, the correct and reliability of results are difficult to be guaranteed. The finite element method based on identification of material parameters is proposed for this investigation on dynamic analysis, simulation and vibration experiment of the U-ToFC. The structure of the U-ToFC is complicated. Its' outside is made of aluminum alloy and inside contains electronic components such as capacitors, resistors, inductors, and integrated circuits. The accurate material parameters of model are identified difficultly. Hence, the parameters identification tests are performed to obtain the material parameters of this structure. On the basis of the above parameters, the experiment and FEA are conducted to the U-ToFC. In terms of the flight acceptance test level, and two kinds of joints condition between the U-ToFC and fixture are considered. The natural frequencies, vibration shapes and the response of the power spectral density of the U-ToFC are obtained. The results show simulation which is based on parameters identification is similar with vibration experiment in natural frequencies and responses. The errors are less than 10%. The vibration modes of simulation and experiment are consistent. The paper provides a more reliable computing method for the dynamic characteristic analysis of large complicated structure.展开更多
In order to provide reliable data for the dynamic design or modification of a tool machine,the dynamic character- istics of the headstock,which is the main component to bear moment,must be obtained precisely.In the pa...In order to provide reliable data for the dynamic design or modification of a tool machine,the dynamic character- istics of the headstock,which is the main component to bear moment,must be obtained precisely.In the paper,the method based on the combination of calculation mode and experiment mode is proposed to analyze the dynamic characteristics of the headstock.The modal parameters and the mode shapes are calculated by ANSYS7.1 software.According to the FEM calculating results,the ex- periment parameters can be selected correctly.The modal parameters of the headstock have to be calculated and identified precisely. On the basis of these modal parameters,the faults of the headstock are shown and its weak points of design are illustrated.A con- clusion is drawn that some reasonable reinforce positions could greatly improve the dynamic characteristics of the system and this ap- proach is proved to be precise and reliable.展开更多
For a coupled system of multiplayer dynamics of fluids in porous media, the characteristic finite element domain decomposition procedures applicable to parallel arithmetic are put forward. Techniques such as calculus ...For a coupled system of multiplayer dynamics of fluids in porous media, the characteristic finite element domain decomposition procedures applicable to parallel arithmetic are put forward. Techniques such as calculus of variations, domain decomposition, characteristic method, negative norm estimate, energy method and the theory of prior estimates are adopted. Optimal order estimates in L^2 norm are derived for the error in the approximate solution.展开更多
The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting ma...The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.展开更多
The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at...The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.展开更多
A cyclic symmetry analysis method is proposed for analyzing the dynamic characteristic problems of thin walled integral im- peller. Reliability and feasibility of the present method are investigated by means of simula...A cyclic symmetry analysis method is proposed for analyzing the dynamic characteristic problems of thin walled integral im- peller. Reliability and feasibility of the present method are investigated by means of simulation and experiment. The fundamental cyclic symmetry equations and the solutions of these equations are derived for the cyclic symmetry structure. The computational efficiency analysis between whole and part is performed. Comparison of results obtained by the finite element analysis (FEA) and experiment shows that the local dynamic characteristic of integral impeller has consistency with the single cyclic symmetry blade. When the integral impeller is constrained and the thin walled blade becomes a concerned object in analysis, the dynamic characteristic of integral impeller can be replaced by the cyclic symmetry blade approximately. Hence, a cyclic symmetry analy- sis method is effectively used to improve efficiency and obtain more information of parameters for dynamic characteristic of integral impellers.展开更多
Studying the vibrational behavior of feed drive systems is important for enhancing the structural performance of computer numerical control(CNC)machines.The preload on the screw and nut position have a great influence...Studying the vibrational behavior of feed drive systems is important for enhancing the structural performance of computer numerical control(CNC)machines.The preload on the screw and nut position have a great influence on the vibration characteristics of the feed drive as two very important operational conditions.Rotational acceleration of the screw also affects the performance of the CNC feed drive when machining small parts.This paper investigates the influence of preload and nut position on the vibration characteristics of the feed drive system of a CNC metal cutting machine in order to be able to eliminate an observed resonance occurred at high rotational speeds of the screw,corresponding to high feed rates.Additionally,rational structural parameters of the feed drive system are selected in order to increase the rotational acceleration for improving the performance of the CNC machine.Experiments and analyses showed that by selecting specific parameters of feed drive system and simultaneously applying a certain value of preload,a 97%increase in rotational acceleration and 30%time reduction considering the vibration resistance at high rotational speeds can be achieved.展开更多
A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method ...A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.展开更多
文摘With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools.
基金Project(2009ZX04001-073)supported by the Important National Science&Technology Specific Projects of ChinaProject(51105025)supported by the National Natural Science Foundation of China
文摘In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.
文摘In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized by high strength-to-mass ratios, minimal stowage volume, which makes them suitable for cost-effective large space structures. A typical example for the inflatable structure is the inflated torus which often used in order to provide structure support. In this study, our main focus is to understand the dynamic characteristics of an inflated torus in order to formulate an accurate mathematical model suitable for active vibration control applications. A commercial finite element package, ANSYS, is used to model the inflated torus. To verify the model the obtained frequencies and mode shapes are compared with the published results, which are derived using analytical approach, the verification shows a good agreement between the FEM and the analytical results. Based on the verified model, parametric study was investigated; the material thickness increase causes the natural frequencies decrease, while the increase of the inflation pressure simply results in stiffening the ring, which means that the natural frequency increased. The FEM analysis gives an easy and fast way for the vibration analysis of the structures compared with the complicated analytical solutions.
文摘In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are those which are thermally induced which are from internal and external heat sources acting on the machine. In this paper, a methodology for determining and analyzing the thermal deformation of machine tools using FEM (finite element method) and ANN (artificial neural networks) is presented. After modeling the machine using FEM is defined the location of the heat sources, it is possible to obtain the temperature gradient and the corresponding thermal deformation at predetermined periods. Results obtained with simulations using the software NX.7.5 showed that this methodology is an effective tool in determining the thermal deformation of the machine, correlating the temperature reading at strategic points with volumetric deformation at the tool tip. Therefore, the thermal analysis of the errors in the pair tool part can be established. After training and validation process, the network will be able to make the prediction of thermal errors just stating the temperature values of specific points of each heat source, providing a way for compensation of thermally induced errors.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
基金supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality,China.
文摘The milling-head machine tool is a sophisticated and high-quality machine tool of which the spindle system is made up of special multi-element structure. Two special mechanical configurations make the cutting performance of the machine tool decline. One is the milling head spindle supported on two sets of complex bearings. The mechanical dynamic rigidity of milling head structure is researched on designed digital prototype with finite element analysis(FEA) and modal synthesis analysis ( MSA ) for identifying the weak structures. The other is the ram structure hanging on milling head. The structure is researched to get dynamic performance on cutting at different ram extending positions. The analysis results on spindle and ram are used to improve the mechanical configurations and structure in design. The machine tool is built up with modified structure and gets better dynamic rigidity than it was before.
基金Supported by the Key Teacher Foundation of Chongqing University (No. 717411067)
文摘In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.
基金The National Science Foundation of China under Grant No.51378111the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0128+2 种基金the Fok Ying-Tong Education Foundation for Young Teachersin the Higher Education Institutions of China under Grant No.142007the Fundamental Research Funds for the Central Universities under Grant No.2242012R30002the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering under Grant No.JSKL2011YB02
文摘A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.
基金Project(2017YFB1201204)supported by National Key R&D Program of China。
文摘The damage of the self-compacting concrete in CRTSⅢslab ballastless track on bridge will lead to a partial void of the track slab,which will affect the comfort and safety of the train and the durability of the track slab and bridge structure.In order to study the impact of the interface crack on the dynamic response of CRTSⅢballastless track system on bridge,based on the principle of multi-body dynamics theory and ANSYS+SIMPACK co-simulation,the spatial model of vehicle-track-bridge integration considering the longitudinal stiffness of supports,the track structure and interlayer contact characteristics were established.The dynamic characteristics of the system under different conditions of the width,length and position of the interface crack were analysed,and the limited values of the length and width of the cracks at the track slab edge were proposed.The results show that when the self-compacting concrete does not completely void along the transverse direction of the track slab,the crack has little effect on the dynamic characteristics of the vehicle-track-bridge system.However,when the self-compacting concrete is completely hollowed out along the transverse direction of the track slab,the dynamic amplitudes of the system increase.When the crack length is 1.6 m,the wheel load reduction rate reaches 0.769,which exceeds the limit value and threatens the safety of train operation.The vertical acceleration of the track slab increases by 250.1%,which affects the service life of the track system under the train speed of 200 km/h.
基金Project (No. 513230502) supported by the PLA General ArmamentDepartment of China
文摘Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a clapper relay in a uniform static magnetic field situation based on the finite element method (FEM) is studied. Influences of the magnetic field on dynamic parameters (delay time, pick-up time, end pressure, and final velocity) as well as a situation in which the relay cannot function normally are analyzed. Simulation reveals that the external magnetic field which weakens the relay’s air-gap field has a greater influence on the relay’s dynamic parameters than the one strengthening the field. The validity of the simulation is verified by measured results of coil current and armature displacement.
基金Project(50975192) supported by the National Natural Science Foundation of ChinaProject(10YFJZJC14100) supported by Tianjin Municipal Natural Science Foundation of China
文摘In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs.
文摘In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate the local vibration modes in order to obtain the whole ship's mode shapes. In the post-processor, a lot of accessorial methods are adopted to eliminate the local vibrations, so that the whole ship's mode shapes can be identified. The modal analysis indicates that the dynamic reduction method fits for mode shapes identifying. In the end,the test results of a catamaran named Frederick G. Greed are used for reference to validate the obtained results. The comparison process shows that the results are credible. A special mode shape, which is quite different with that of conventional monohull ship, is also pointed out. The obtained results provide a valuable reference for the coming computation of catamaran's vihration characteristics.
基金supported by National Natural Science Foundation of China (Grant No. 51105025)Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China (Grant No. BUAA-VR-12KF-10)
文摘The dynamic characteristic parameters of Up-time of Flight Counter (U-ToFC) are important for research of structure optimization and reliability. However, the current simulation is performed based on homogenous material and simplified constraint model, the correct and reliability of results are difficult to be guaranteed. The finite element method based on identification of material parameters is proposed for this investigation on dynamic analysis, simulation and vibration experiment of the U-ToFC. The structure of the U-ToFC is complicated. Its' outside is made of aluminum alloy and inside contains electronic components such as capacitors, resistors, inductors, and integrated circuits. The accurate material parameters of model are identified difficultly. Hence, the parameters identification tests are performed to obtain the material parameters of this structure. On the basis of the above parameters, the experiment and FEA are conducted to the U-ToFC. In terms of the flight acceptance test level, and two kinds of joints condition between the U-ToFC and fixture are considered. The natural frequencies, vibration shapes and the response of the power spectral density of the U-ToFC are obtained. The results show simulation which is based on parameters identification is similar with vibration experiment in natural frequencies and responses. The errors are less than 10%. The vibration modes of simulation and experiment are consistent. The paper provides a more reliable computing method for the dynamic characteristic analysis of large complicated structure.
基金The financial support for this research is provided by the Natural Science foundation of China(No.50475117)Youth Natural Science Fund of Shanxi(No.20011021)
文摘In order to provide reliable data for the dynamic design or modification of a tool machine,the dynamic character- istics of the headstock,which is the main component to bear moment,must be obtained precisely.In the paper,the method based on the combination of calculation mode and experiment mode is proposed to analyze the dynamic characteristics of the headstock.The modal parameters and the mode shapes are calculated by ANSYS7.1 software.According to the FEM calculating results,the ex- periment parameters can be selected correctly.The modal parameters of the headstock have to be calculated and identified precisely. On the basis of these modal parameters,the faults of the headstock are shown and its weak points of design are illustrated.A con- clusion is drawn that some reasonable reinforce positions could greatly improve the dynamic characteristics of the system and this ap- proach is proved to be precise and reliable.
基金Supported by the Major State Basic Research Program of China (No. 1999032803)the National Tackling Key Problems Program (No. 2002020094)+1 种基金the National Natural Scicnccs Foundation of China (Nos.19972039,10271066)the Doctorate Foundation of the Ministry of Education of China (No.2003042047)
文摘For a coupled system of multiplayer dynamics of fluids in porous media, the characteristic finite element domain decomposition procedures applicable to parallel arithmetic are put forward. Techniques such as calculus of variations, domain decomposition, characteristic method, negative norm estimate, energy method and the theory of prior estimates are adopted. Optimal order estimates in L^2 norm are derived for the error in the approximate solution.
基金National Natural Science Foundation of China,Grant/Award Number:52105129Science Challenge Project,Grant/Award Number:JZDD2016006–0102Boya Postdoctoral Fellowship of Peking University。
文摘The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools.
文摘The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.
基金National Natural Science Foundation of China (51105025)Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems of Beihang University (BUAA-VR-12KF-10)
文摘A cyclic symmetry analysis method is proposed for analyzing the dynamic characteristic problems of thin walled integral im- peller. Reliability and feasibility of the present method are investigated by means of simulation and experiment. The fundamental cyclic symmetry equations and the solutions of these equations are derived for the cyclic symmetry structure. The computational efficiency analysis between whole and part is performed. Comparison of results obtained by the finite element analysis (FEA) and experiment shows that the local dynamic characteristic of integral impeller has consistency with the single cyclic symmetry blade. When the integral impeller is constrained and the thin walled blade becomes a concerned object in analysis, the dynamic characteristic of integral impeller can be replaced by the cyclic symmetry blade approximately. Hence, a cyclic symmetry analy- sis method is effectively used to improve efficiency and obtain more information of parameters for dynamic characteristic of integral impellers.
文摘Studying the vibrational behavior of feed drive systems is important for enhancing the structural performance of computer numerical control(CNC)machines.The preload on the screw and nut position have a great influence on the vibration characteristics of the feed drive as two very important operational conditions.Rotational acceleration of the screw also affects the performance of the CNC feed drive when machining small parts.This paper investigates the influence of preload and nut position on the vibration characteristics of the feed drive system of a CNC metal cutting machine in order to be able to eliminate an observed resonance occurred at high rotational speeds of the screw,corresponding to high feed rates.Additionally,rational structural parameters of the feed drive system are selected in order to increase the rotational acceleration for improving the performance of the CNC machine.Experiments and analyses showed that by selecting specific parameters of feed drive system and simultaneously applying a certain value of preload,a 97%increase in rotational acceleration and 30%time reduction considering the vibration resistance at high rotational speeds can be achieved.
基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2012AA041803)supported by National High Technology Research and Development Program of China。
文摘A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.