The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image ar...The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing.展开更多
This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patient...This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patiently waiting for long hours, maybe several days in whatever location and under severe weather conditions until capturing what they are interested in. Also there is a big demand for rare wild life photo graphs. The proposed method makes the task automatically use microcontroller controlled camera, image processing and machine learning techniques. First with the aid of microcontroller and four passive IR sensors system will automatically detect the presence of animal and rotate the camera toward that direction. Then the motion detection algorithm will get the animal into middle of the frame and capture by high end auto focus web cam. Then the captured images send to the PC and are compared with photograph database to check whether the animal is exactly the same as the photographer choice. If that captured animal is the exactly one who need to capture then it will automatically capture more. Though there are several technologies available none of these are capable of recognizing what it captures. There is no detection of animal presence in different angles. Most of available equipment uses a set of PIR sensors and whatever it disturbs the IR field will automatically be captured and stored. Night time images are black and white and have less details and clarity due to infrared flash quality. If the infrared flash is designed for best image quality, range will be sacrificed. The photographer might be interested in a specific animal but there is no facility to recognize automatically whether captured animal is the photographer’s choice or not.展开更多
Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still inv...Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.展开更多
This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus seve...This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.展开更多
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of mate...When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.展开更多
To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-...To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection.展开更多
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ...Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.展开更多
This paper describes industrial sorting system, which is based on robot vision technology, introduces main image processing methodology used during development, and simulates algorithm with Matlab. Besides, we set up ...This paper describes industrial sorting system, which is based on robot vision technology, introduces main image processing methodology used during development, and simulates algorithm with Matlab. Besides, we set up image processing algorithm library via C# program and realize recognition and location for regular geometry workpiece. Furthermore, we analyze camera model in vision algorithm library, calibrate the camera, process the image series, and resolve the identify problem for regular geometry workpiece with different colours.展开更多
An optical inspection method of the Ball Grid Array package(BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as t...An optical inspection method of the Ball Grid Array package(BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as the height of solder ball, diameter, pitch and coplanarity. The experiment has proved that this system is available for BGA failure detection.展开更多
Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offis...Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%.展开更多
This paper presents a new Omni-Directional Tilt Sensor (ODTS), which consists of the LED light, transparent cone-shaped closed container, mercury, camera, embedded systems and so on. The volume of the mercury in the c...This paper presents a new Omni-Directional Tilt Sensor (ODTS), which consists of the LED light, transparent cone-shaped closed container, mercury, camera, embedded systems and so on. The volume of the mercury in the container is equal to half of the container’s. When the detected surface is horizontal, the shape of mercury in the image captured by the camera is a black disc since the mercury is lightproof. When the detected surface tilts, the mercury flows and the mercury surface always maintains horizontally due to the gravity force of the earth. At this time, some area of the transparent cone-shaped closed container is not shaded by mercury and the border of the mercury’s shape in the captured image is a half circle and a half ellipse. Thus there is a translucent crescent-shaped area in the image. With analyzing this area by the specific algorithm based on machine vision, the tilt angle and directional angle can be obtained. The experimental results show that the ODTS proposed has some advantages, such as simple maintenance, high precision, wide range, low cost, real-time, reliability and high visualization.展开更多
The concept of machine vision based manufacturing technology is proposed first,and the key algorithms used in two-dimensional and three-dimensional machining are discussed in detail.Machining information can be derive...The concept of machine vision based manufacturing technology is proposed first,and the key algorithms used in two-dimensional and three-dimensional machining are discussed in detail.Machining information can be derived from the binary images and gray picture after processing and transforming the picture.Contour and the parallel cutting method about two-dimen- sional machining are proposed.Polygon approximating algorithm is used to cutting the profile of the workpiece.Fill Scanning al- gorithm used to machining inner part of a pocket.The improved Shape From Shading method with adaptive pre-processing is adopted to reconstruct the three-dimensional model.Layer cutting method is adopted for three-dimensional machining.The tool path is then gotten from the model,and NC code is formed subsequently.The model can be machined conveniently by the lathe, milling machine or engraver.Some examples are given to demonstrate the results of lmageCAM system,which is developed by the author to implement the algorithms previously mentioned.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
With the rapid development of sensor networks,machine vision faces the problem of storing and computing massive data.The human visual system has a very efficient information sense and computation ability,which has enl...With the rapid development of sensor networks,machine vision faces the problem of storing and computing massive data.The human visual system has a very efficient information sense and computation ability,which has enlightening significance for solving the above problems in machine vision.This review aims to comprehensively summarize the latest advances in bio-inspired image sensors that can be used to improve machine-vision processing efficiency.After briefly introducing the research background,the relevant mechanisms of visual information processing in human visual systems are briefly discussed,including layerby-layer processing,sparse coding,and neural adaptation.Subsequently,the cases and performance of image sensors corresponding to various bio-inspired mechanisms are introduced.Finally,the challenges and perspectives of implementing bio-inspired image sensors for efficient machine vision are discussed.展开更多
文摘The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing.
文摘This project is mainly focused to develop system for animal researchers & wild life photographers to overcome so many challenges in their day life today. When they engage in such situation, they need to be patiently waiting for long hours, maybe several days in whatever location and under severe weather conditions until capturing what they are interested in. Also there is a big demand for rare wild life photo graphs. The proposed method makes the task automatically use microcontroller controlled camera, image processing and machine learning techniques. First with the aid of microcontroller and four passive IR sensors system will automatically detect the presence of animal and rotate the camera toward that direction. Then the motion detection algorithm will get the animal into middle of the frame and capture by high end auto focus web cam. Then the captured images send to the PC and are compared with photograph database to check whether the animal is exactly the same as the photographer choice. If that captured animal is the exactly one who need to capture then it will automatically capture more. Though there are several technologies available none of these are capable of recognizing what it captures. There is no detection of animal presence in different angles. Most of available equipment uses a set of PIR sensors and whatever it disturbs the IR field will automatically be captured and stored. Night time images are black and white and have less details and clarity due to infrared flash quality. If the infrared flash is designed for best image quality, range will be sacrificed. The photographer might be interested in a specific animal but there is no facility to recognize automatically whether captured animal is the photographer’s choice or not.
基金Supported by the Fundamental Public Welfare Research Program of Zhejiang Provincial Natural Science Foundation,China(LGN18C140007 and Y20C140024)the National High Technology Research and Development Program of China(863 Program,2013AA102402)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.
基金supported by the Beijing Municipal Science and Technology Project,China (Z151100001015004)
文摘This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.
基金This research was done as part of TEKES-funded PanFlow project and as part of a project OPTIMI funded by the Academy of Finland (grant number 117587) in Micro- and Nanosystems Research Group, Tampere University of Technology, Finland.
文摘When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.
文摘To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection.
文摘Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.
文摘This paper describes industrial sorting system, which is based on robot vision technology, introduces main image processing methodology used during development, and simulates algorithm with Matlab. Besides, we set up image processing algorithm library via C# program and realize recognition and location for regular geometry workpiece. Furthermore, we analyze camera model in vision algorithm library, calibrate the camera, process the image series, and resolve the identify problem for regular geometry workpiece with different colours.
文摘An optical inspection method of the Ball Grid Array package(BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as the height of solder ball, diameter, pitch and coplanarity. The experiment has proved that this system is available for BGA failure detection.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (NRF-2020R1I1A3073313).
文摘Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%.
文摘This paper presents a new Omni-Directional Tilt Sensor (ODTS), which consists of the LED light, transparent cone-shaped closed container, mercury, camera, embedded systems and so on. The volume of the mercury in the container is equal to half of the container’s. When the detected surface is horizontal, the shape of mercury in the image captured by the camera is a black disc since the mercury is lightproof. When the detected surface tilts, the mercury flows and the mercury surface always maintains horizontally due to the gravity force of the earth. At this time, some area of the transparent cone-shaped closed container is not shaded by mercury and the border of the mercury’s shape in the captured image is a half circle and a half ellipse. Thus there is a translucent crescent-shaped area in the image. With analyzing this area by the specific algorithm based on machine vision, the tilt angle and directional angle can be obtained. The experimental results show that the ODTS proposed has some advantages, such as simple maintenance, high precision, wide range, low cost, real-time, reliability and high visualization.
基金Funded by NSF of Hebei Education Department,China(Grant # 2004125)
文摘The concept of machine vision based manufacturing technology is proposed first,and the key algorithms used in two-dimensional and three-dimensional machining are discussed in detail.Machining information can be derived from the binary images and gray picture after processing and transforming the picture.Contour and the parallel cutting method about two-dimen- sional machining are proposed.Polygon approximating algorithm is used to cutting the profile of the workpiece.Fill Scanning al- gorithm used to machining inner part of a pocket.The improved Shape From Shading method with adaptive pre-processing is adopted to reconstruct the three-dimensional model.Layer cutting method is adopted for three-dimensional machining.The tool path is then gotten from the model,and NC code is formed subsequently.The model can be machined conveniently by the lathe, milling machine or engraver.Some examples are given to demonstrate the results of lmageCAM system,which is developed by the author to implement the algorithms previously mentioned.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
基金provided by the National Natural Science Foundation of China(Grant Nos.92250304,62204230,62020106002,and T2293750)the National Key Research and Development Program of China(Grant No.2021YFC2401403)the Department of Science and Technology of Zhejiang Province“Leading Goose”Program(Grant No.2022C01077)
文摘With the rapid development of sensor networks,machine vision faces the problem of storing and computing massive data.The human visual system has a very efficient information sense and computation ability,which has enlightening significance for solving the above problems in machine vision.This review aims to comprehensively summarize the latest advances in bio-inspired image sensors that can be used to improve machine-vision processing efficiency.After briefly introducing the research background,the relevant mechanisms of visual information processing in human visual systems are briefly discussed,including layerby-layer processing,sparse coding,and neural adaptation.Subsequently,the cases and performance of image sensors corresponding to various bio-inspired mechanisms are introduced.Finally,the challenges and perspectives of implementing bio-inspired image sensors for efficient machine vision are discussed.