Component reallocation(CR)is receiving increasing attention in many engineering systems with functionally interchangeable and unbalanced degradation components.This paper studies a CR and system replacement maintenanc...Component reallocation(CR)is receiving increasing attention in many engineering systems with functionally interchangeable and unbalanced degradation components.This paper studies a CR and system replacement maintenance policy of series repairable systems,which undergoes minimal repairs for each emergency failure of components,and considers constant downtime and cost of minimal repair,CR and system replacement.Two binary mixed integer nonlinear programming models are respectively established to determine the assignment of CR,and the uptime right before CR and system replacement with the objective of minimizing the system average maintenance cost and maximizing the system availability.Further,we derive the optimal uptime right before system replacement with maximization of the system availability,and then give the relationship between the system availability and the component failure rate.Finally,numerical examples show that the CR and system replacement maintenance policy can effectively reduce the system average maintenance cost and improve the system availability,and further give the sensitivity analysis and insights of the CR and system replacement maintenance policy.展开更多
This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different price...This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.展开更多
Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into accoun...Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.展开更多
Discounted cash flow analysis is one of the standard methods used to value urban forests and trees. It involves calculating today’s value for all benefits and costs attributed to an investment;that is discounting all...Discounted cash flow analysis is one of the standard methods used to value urban forests and trees. It involves calculating today’s value for all benefits and costs attributed to an investment;that is discounting all cash flows to today’s value using an appropriate interest rate. This requires each benefit and cost be stated in terms of its cash flow. Urban tree benefits are complex. Little notice is given to the components of these benefits. Total urban tree benefits are a summation of partial benefits, including property value increase, storm water reduction, air quality improvement, carbon sequestration, natural gas savings, and electricity savings. We discuss the nature of these partial benefits, especially the geographical, temporal, diameter size, and rate of growth differences. These differences are even reflected in nursery stock valuation. Net present value analysis is used to illustrate the impact of these differences on financial return. An understanding of these components will prove valuable to those attempting to estimate urban forest and tree benefits.展开更多
The enhanced power quality provided by multilevel inverters(MLIs)has made them more appropriate for medium-and high-power applications,including photovoltaic systems.Nevertheless,a prevalent limitation involves the ne...The enhanced power quality provided by multilevel inverters(MLIs)has made them more appropriate for medium-and high-power applications,including photovoltaic systems.Nevertheless,a prevalent limitation involves the necessity for numerous switches and increased voltage stress across these switches,consequently increasing the overall system cost.To address these challenges,a new 17-level asymmetrical MLI with fewer components and low voltage stress is proposed for the photovoltaic system.This innovative MLI configuration has four direct current(DC)sources and 10 switches.Based on the trinary sequence,the proposed topology uses photovoltaics with boost converters and fuzzy logic controllers as its DC sources.Mathematical equations are used to calculate cru-cial parameters for this proposed design,including total standing voltage per unit(TSVPU),cost function per level(CF/L),component count per level(CC/L)and voltage stress across the switches.The comparison is conducted by considering switches,DC sources,TSVPU,CF/L,gate driver circuits and CC/L with other existing MLI topologies.The analysis is carried out under various conditions,encompassing different levels of irradiance,variable loads and modulation indices.To reduce the total harmonic distortion of the suggested topology,the phase opposition disposition approach has been incorporated.The suggested framework is simulated in MATLAB®/Simulink®.The results indicate that the proposed topology achieves a well-distributed stress profile across the switches and has CC/L of 1.23,TSVPU of 5 and CF/L of 4.58 and 5.76 with weight coefficients of 0.5 and 1.5,respectively.These values are not-ably superior to those of existing MLI topologies.Simulation results demonstrate that the proposed topology maintains a consistent output at varying irradiance levels with FLCs and exhibits robust performance under variable loads and diverse modulation indices.Furthermore,the total harmonic distortion achieved with phase opposition disposition is 7.78%,outperforming alternative pulse width modulation techniques.In summary,it provides enhanced performance.Considering this,it is suitable for the photovoltaic system.展开更多
基金supported by the National Natural Science Foundation of China(72101025,72271049)the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the China Postdoct oral Science Foundation(2021M690349)。
文摘Component reallocation(CR)is receiving increasing attention in many engineering systems with functionally interchangeable and unbalanced degradation components.This paper studies a CR and system replacement maintenance policy of series repairable systems,which undergoes minimal repairs for each emergency failure of components,and considers constant downtime and cost of minimal repair,CR and system replacement.Two binary mixed integer nonlinear programming models are respectively established to determine the assignment of CR,and the uptime right before CR and system replacement with the objective of minimizing the system average maintenance cost and maximizing the system availability.Further,we derive the optimal uptime right before system replacement with maximization of the system availability,and then give the relationship between the system availability and the component failure rate.Finally,numerical examples show that the CR and system replacement maintenance policy can effectively reduce the system average maintenance cost and improve the system availability,and further give the sensitivity analysis and insights of the CR and system replacement maintenance policy.
文摘This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.
基金supported by the Postdoctoral Science Foundation of China(20080431380)
文摘Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.
文摘Discounted cash flow analysis is one of the standard methods used to value urban forests and trees. It involves calculating today’s value for all benefits and costs attributed to an investment;that is discounting all cash flows to today’s value using an appropriate interest rate. This requires each benefit and cost be stated in terms of its cash flow. Urban tree benefits are complex. Little notice is given to the components of these benefits. Total urban tree benefits are a summation of partial benefits, including property value increase, storm water reduction, air quality improvement, carbon sequestration, natural gas savings, and electricity savings. We discuss the nature of these partial benefits, especially the geographical, temporal, diameter size, and rate of growth differences. These differences are even reflected in nursery stock valuation. Net present value analysis is used to illustrate the impact of these differences on financial return. An understanding of these components will prove valuable to those attempting to estimate urban forest and tree benefits.
文摘The enhanced power quality provided by multilevel inverters(MLIs)has made them more appropriate for medium-and high-power applications,including photovoltaic systems.Nevertheless,a prevalent limitation involves the necessity for numerous switches and increased voltage stress across these switches,consequently increasing the overall system cost.To address these challenges,a new 17-level asymmetrical MLI with fewer components and low voltage stress is proposed for the photovoltaic system.This innovative MLI configuration has four direct current(DC)sources and 10 switches.Based on the trinary sequence,the proposed topology uses photovoltaics with boost converters and fuzzy logic controllers as its DC sources.Mathematical equations are used to calculate cru-cial parameters for this proposed design,including total standing voltage per unit(TSVPU),cost function per level(CF/L),component count per level(CC/L)and voltage stress across the switches.The comparison is conducted by considering switches,DC sources,TSVPU,CF/L,gate driver circuits and CC/L with other existing MLI topologies.The analysis is carried out under various conditions,encompassing different levels of irradiance,variable loads and modulation indices.To reduce the total harmonic distortion of the suggested topology,the phase opposition disposition approach has been incorporated.The suggested framework is simulated in MATLAB®/Simulink®.The results indicate that the proposed topology achieves a well-distributed stress profile across the switches and has CC/L of 1.23,TSVPU of 5 and CF/L of 4.58 and 5.76 with weight coefficients of 0.5 and 1.5,respectively.These values are not-ably superior to those of existing MLI topologies.Simulation results demonstrate that the proposed topology maintains a consistent output at varying irradiance levels with FLCs and exhibits robust performance under variable loads and diverse modulation indices.Furthermore,the total harmonic distortion achieved with phase opposition disposition is 7.78%,outperforming alternative pulse width modulation techniques.In summary,it provides enhanced performance.Considering this,it is suitable for the photovoltaic system.