In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ...In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.展开更多
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ...Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.展开更多
Agricultural machinery total power is an important index to reflect and evaluate the level of agricultural mechanization. Firstly,we respectively made use of exponential model,grey forecasting and BP neural network to...Agricultural machinery total power is an important index to reflect and evaluate the level of agricultural mechanization. Firstly,we respectively made use of exponential model,grey forecasting and BP neural network to construct models depending on historical data of agricultural machinery total power of Heilongjiang Province; secondly,we constructed the combined forecasting models that respectively based on divergence coefficient method,quadratic programming and weight distribution of Shapley value. Fitting results showed that the various combination forecasting model is superior to the single models. Finally,we applied the combination forecasting model which based on the weight distribution method of Shapley value to forecast Heilongjiang agricultural machinery total power,and it would provide some reference to the development and program for power of agriculture machinery.展开更多
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mine...Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mined to verify that electrical energy flowing in its railway power feeding system is appropriate or not. Gauss-Seidel, conventional Newton-Raphson, and current injection methods are well-known and widely accepted as a tool for electrical power network solver in DC railway power supply study. In this paper, a simplified Newton-Raphson method has been proposed. The proposed method employs a set of current-balance equations at each electrical node instead of the conventional power-balance equation used in the conventional Newton-Raphson method. This concept can remarkably reduce execution time and computing complexity for multi-train simulation. To evaluate its use, Sukhumvit line of Bangkok transit system (BTS) of Thai- land with 21.6-km line length and 22 passenger stopping stations is set as a test system. The multi-train simulation integrated with the proposed power network solver is developed to simulate 1-h operation service of selected 5-min headway. From the obtained results, the proposed method is more efficient with approximately 18 % faster than the conventional Newton-Raphson method and just over 6 % faster than the current injection method.展开更多
The key problems of cold power spinning of Ti-15-3 alloy are studied. Reasonable billet preparation methods are presented to improve crystal structure and avoid crack of billet. Influences of original wall thickness,...The key problems of cold power spinning of Ti-15-3 alloy are studied. Reasonable billet preparation methods are presented to improve crystal structure and avoid crack of billet. Influences of original wall thickness, reduction rate and feed rate on expanding in diameter are analyzed and some methods to prevent expanding in diameter are given.展开更多
A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime co...A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime conservation element and solution element(CE/SE)method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems.The performance parameters of diesel engine with speed of 2100 r/min are simulated.The simulated results are in accordance with the experimental data.The effect of increased power density on charging coefficient is analyzed using a validated model.The results show that the charging coefficient is slowly improved with the increase in intake pressure,and is obviously reduced with the increase in engine speed.展开更多
China is an important country in iron and steel industry.Power electronics converters are widely used.For the cold rolling mills of high speed,AC-DC-AC converters should be used.In the paper,the design and the control...China is an important country in iron and steel industry.Power electronics converters are widely used.For the cold rolling mills of high speed,AC-DC-AC converters should be used.In the paper,the design and the control system of the large power three-level AC - DC - AC converter with IGCTs is investigated,and a back-to-back large power three-level AC - DC - AC converter with IGCTs has been got. With a series experiments,the performance of the converter is examined.The experiment result indicates the converter reaches the design requirement and it shows excellent performance.The converter system has been put into use safely.It is estimated that the AC - DC - AC converter system will be used in the drive systems for rolling mills in the near future.展开更多
A backbone enterprise under the ChinaAviation Industry Corporation,theSouth Aeronautic Power MachineryCompany is well known for its South brandmotorcycles.The SAPMC is the coreenterprise of the China South Aviation Po...A backbone enterprise under the ChinaAviation Industry Corporation,theSouth Aeronautic Power MachineryCompany is well known for its South brandmotorcycles.The SAPMC is the coreenterprise of the China South Aviation PowerMachinery Group,which is among China’sfirst 56 large-scale enterprise groups approvedby the State Council.In 1994,the展开更多
The 16th National Congress of the Communist Party of China was held inNovember 2002. In the five years since then, great changes took place in Chinesepower industry. Power institutional reform was deepened; the constr...The 16th National Congress of the Communist Party of China was held inNovember 2002. In the five years since then, great changes took place in Chinesepower industry. Power institutional reform was deepened; the construction ofboth power sources and power grids was speeded up; the tense situation of powersupply and demand was alleviated; the safety and reliability of power productionwere improved; the management on power tariff was standardized; environmentalprotection and energy conservation achieved good results; researches on newtechnologies made new achievements; and the operation of enterprises was im-proved.展开更多
基金National Key Research and Development Program of China(Grant No.2020YFB2009702)National Natural Science Foundation of China(Grant Nos.52075055,U21A20124 and 52111530069)Chongqing Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0780)。
文摘In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.
基金the National Natural Science Foundation of China(No.51875209)the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120060)the Open Funds of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment。
文摘Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.
文摘Agricultural machinery total power is an important index to reflect and evaluate the level of agricultural mechanization. Firstly,we respectively made use of exponential model,grey forecasting and BP neural network to construct models depending on historical data of agricultural machinery total power of Heilongjiang Province; secondly,we constructed the combined forecasting models that respectively based on divergence coefficient method,quadratic programming and weight distribution of Shapley value. Fitting results showed that the various combination forecasting model is superior to the single models. Finally,we applied the combination forecasting model which based on the weight distribution method of Shapley value to forecast Heilongjiang agricultural machinery total power,and it would provide some reference to the development and program for power of agriculture machinery.
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
文摘Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mined to verify that electrical energy flowing in its railway power feeding system is appropriate or not. Gauss-Seidel, conventional Newton-Raphson, and current injection methods are well-known and widely accepted as a tool for electrical power network solver in DC railway power supply study. In this paper, a simplified Newton-Raphson method has been proposed. The proposed method employs a set of current-balance equations at each electrical node instead of the conventional power-balance equation used in the conventional Newton-Raphson method. This concept can remarkably reduce execution time and computing complexity for multi-train simulation. To evaluate its use, Sukhumvit line of Bangkok transit system (BTS) of Thai- land with 21.6-km line length and 22 passenger stopping stations is set as a test system. The multi-train simulation integrated with the proposed power network solver is developed to simulate 1-h operation service of selected 5-min headway. From the obtained results, the proposed method is more efficient with approximately 18 % faster than the conventional Newton-Raphson method and just over 6 % faster than the current injection method.
文摘The key problems of cold power spinning of Ti-15-3 alloy are studied. Reasonable billet preparation methods are presented to improve crystal structure and avoid crack of billet. Influences of original wall thickness, reduction rate and feed rate on expanding in diameter are analyzed and some methods to prevent expanding in diameter are given.
文摘A one-dimensional pipe flow model of single-cylinder diesel engine is established to investigate the intake and exhaust flow characteristics of diesel engine in the condition of high power density(HPD).A space-lime conservation element and solution element(CE/SE)method is used to derive the discrete equations of the partial differential equation for the intake and exhaust systems.The performance parameters of diesel engine with speed of 2100 r/min are simulated.The simulated results are in accordance with the experimental data.The effect of increased power density on charging coefficient is analyzed using a validated model.The results show that the charging coefficient is slowly improved with the increase in intake pressure,and is obviously reduced with the increase in engine speed.
文摘China is an important country in iron and steel industry.Power electronics converters are widely used.For the cold rolling mills of high speed,AC-DC-AC converters should be used.In the paper,the design and the control system of the large power three-level AC - DC - AC converter with IGCTs is investigated,and a back-to-back large power three-level AC - DC - AC converter with IGCTs has been got. With a series experiments,the performance of the converter is examined.The experiment result indicates the converter reaches the design requirement and it shows excellent performance.The converter system has been put into use safely.It is estimated that the AC - DC - AC converter system will be used in the drive systems for rolling mills in the near future.
文摘A backbone enterprise under the ChinaAviation Industry Corporation,theSouth Aeronautic Power MachineryCompany is well known for its South brandmotorcycles.The SAPMC is the coreenterprise of the China South Aviation PowerMachinery Group,which is among China’sfirst 56 large-scale enterprise groups approvedby the State Council.In 1994,the
文摘The 16th National Congress of the Communist Party of China was held inNovember 2002. In the five years since then, great changes took place in Chinesepower industry. Power institutional reform was deepened; the construction ofboth power sources and power grids was speeded up; the tense situation of powersupply and demand was alleviated; the safety and reliability of power productionwere improved; the management on power tariff was standardized; environmentalprotection and energy conservation achieved good results; researches on newtechnologies made new achievements; and the operation of enterprises was im-proved.