Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the...Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.展开更多
In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral struct...In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral structure for a newtype of opposed-piston hydraulic-output( OPHO) engine has been designed,an operating principle has been introduced,the composition of its synchronous drive mechanism has been carefully analyzed,and a mathematical model has been built. In addition,the kinematics models of both the mechanism and the conventional crank-link mechanism have been established by utilizing MATLAB,and the movement rules of the pivotal moving components have been obtained. According to the simulation results,the piston movement of this newtype of opposed-piston hydraulic-output engine reveals a prominent asymmetry compared to the conventional crank-link engine. Under a fixed engine revolving speed,the compression time of the opposedpiston hydraulic-output engine is shortened while the expanding time is lengthened,thus the gas turbulence intensity is strengthened around the top dead center( TDC) position. Meanwhile,the piston obtains a longer isometric process compared to conventional engines,which could be benefitial to enhance the combustion efficiency.展开更多
文摘Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.
基金Supported by the Basic Research Projects of National Ministries and Commissions(62201070215)
文摘In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral structure for a newtype of opposed-piston hydraulic-output( OPHO) engine has been designed,an operating principle has been introduced,the composition of its synchronous drive mechanism has been carefully analyzed,and a mathematical model has been built. In addition,the kinematics models of both the mechanism and the conventional crank-link mechanism have been established by utilizing MATLAB,and the movement rules of the pivotal moving components have been obtained. According to the simulation results,the piston movement of this newtype of opposed-piston hydraulic-output engine reveals a prominent asymmetry compared to the conventional crank-link engine. Under a fixed engine revolving speed,the compression time of the opposedpiston hydraulic-output engine is shortened while the expanding time is lengthened,thus the gas turbulence intensity is strengthened around the top dead center( TDC) position. Meanwhile,the piston obtains a longer isometric process compared to conventional engines,which could be benefitial to enhance the combustion efficiency.