期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Vibration properties of Paulownia wood for Ruan sound quality using machine learning methods
1
作者 Yang Yang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期216-222,共7页
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba... As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards. 展开更多
关键词 Sound quality Wood vibration performance Paulownia wood Machine learning methods
下载PDF
Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods
2
作者 Jeferson Stiver Oliveira de Castro José Ciríaco Pinheiro +5 位作者 Sílvia Simone dos Santos de Morais Heriberto Rodrigues Bitencourt Antonio Florêncio de Figueiredo Marcos Antonio Barros dos Santos Fábio dos Santos Gil Ana Cecília Barbosa Pinheiro 《Journal of Biophysical Chemistry》 CAS 2023年第1期1-29,共29页
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m... N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation. 展开更多
关键词 Antimalarial Design MEP Ligand-Receptor Interaction Supervised Machine Learning methods Models Built with Supervised Machine Learning methods
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
3
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Combined method of plastic work piece machining based on a pretreatment mechanical down
4
作者 ERENKOV O Y KOVALCHUK S A GAVRILOVA A V 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期20-24,共5页
An analysis of polymer materials behavior under cutting forces load was presented.The analysis was accomplished taking into account the existence and interaction of micro cracks in material.On the basis of modeling re... An analysis of polymer materials behavior under cutting forces load was presented.The analysis was accomplished taking into account the existence and interaction of micro cracks in material.On the basis of modeling representations of a polymeric material behavior at cutting the method of preliminary mechanical destruction a superficial layer of polymeric material was developed.The essence of the method consists in producing micro-cracks in form of blind holes on the upper layer of blanks before turning.The aim of this method is a plastic deformation zones creation under stresses interaction occurring at the adjacent crack apexes.Results of experimental researches of fabric-based laminate turning processing according to the offered method were submitted.The analysis of the received results confirms expediency of application of the given combined method and the decrease of a roughness on the processed surface of fabric-based laminate is testifying about it. 展开更多
关键词 polymer materials MICROCRACKS surface roughness stresses distribution mechanical destruction deformation zones machining methods
下载PDF
The State-of-the-Art Review on Applications of Intrusive Sensing,Image Processing Techniques,and Machine Learning Methods in Pavement Monitoring and Analysis 被引量:14
5
作者 Yue Hou Qiuhan Li +5 位作者 Chen Zhang Guoyang Lu Zhoujing Ye Yihan Chen Linbing Wang Dandan Cao 《Engineering》 SCIE EI 2021年第6期845-856,共12页
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a... In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches. 展开更多
关键词 Pavement monitoring and analysis The state-of-the-art review Intrusive sensing Image processing techniques Machine learning methods
下载PDF
Casing life prediction using Borda and support vector machine methods 被引量:4
6
作者 Xu Zhiqian Yan Xiangzhen Yang Xiujuan 《Petroleum Science》 SCIE CAS CSCD 2010年第3期416-421,共6页
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ... Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy. 展开更多
关键词 Support vector machine method Borda method life prediction model failure modes RISKFACTORS
下载PDF
A REVIEW OF THE HISTORY OF CHINA'S MACHINE DESIGN METHODS AND THE PROSPECT
7
作者 Yang Shuzi & Liu Kerning(Huazhong University of Science and Technology, Wuhan) CAS Member and president of Huazhong University of Science and Technology 《Bulletin of the Chinese Academy of Sciences》 1997年第2期175-184,共10页
This paper examines the history of China’s machine design methods and its status quo. First of all, it discusses machine design methods in ancient China. (1)The design idea of creation by the intelligent and expositi... This paper examines the history of China’s machine design methods and its status quo. First of all, it discusses machine design methods in ancient China. (1)The design idea of creation by the intelligent and exposition by the ingenious. (2)The design principle of the dependence of workmanship on criteria. (3)A macroscopic view of the object of design. (4)The design method of manufacture emphasizing shape. (5)Technological requirements on excellent material and consummate skill. Second, it discusses machine design ideas in ancient China. (1)The system idea in machine design, (2)The idea of machine design.(3)The idea of standardization in machine design. (4)The idea of automation in machine design. Finally, it discusses the status quo and a look ahead of the theory of machine design in China. 展开更多
关键词 A REVIEW OF THE HISTORY OF CHINA’S MACHINE DESIGN methods AND THE PROSPECT
下载PDF
The Coordinated Influence of Indian Ocean Sea Surface Temperature and Arctic Sea Ice on Anomalous Northeast China Cold Vortex Activities with Different Paths during Late Summer 被引量:2
8
作者 Yitong LIN Yihe FANG +3 位作者 Chunyu ZHAO Zhiqiang GONG Siqi YANG Yiqiu YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期62-77,共16页
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC... The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months. 展开更多
关键词 machine learning method Northeast China cold vortex path classification Indian Ocean sea surface temperature Arctic sea ice model sensitivity test
下载PDF
Automatic recognition of tweek atmospherics and plasma diagnostics in the lower ionosphere with the machine learning method
9
作者 Mao Zhang GaoPeng Lu +5 位作者 HaiLiang Huang ZhengWei Cheng YaZhou Chen Steven A.Cummer JiaYi Zheng JiuHou Lei 《Earth and Planetary Physics》 EI CSCD 2023年第3期407-413,共7页
Tweek atmospherics are extremely low frequency and very low frequency pulse signals with frequency dispersion characteristics that originate from lightning discharges and that propagate in the Earth–ionosphere wavegu... Tweek atmospherics are extremely low frequency and very low frequency pulse signals with frequency dispersion characteristics that originate from lightning discharges and that propagate in the Earth–ionosphere waveguide over long distances.In this study,we developed an automatic method to recognize tweek atmospherics and diagnose the lower ionosphere based on the machine learning method.The differences(automatic−manual)in each ionosphere parameter between the automatic method and the manual method were−0.07±2.73 km,0.03±0.92 cm^(−3),and 91±1,068 km for the ionospheric reflection height(h),equivalent electron densities at reflection heights(Ne),and propagation distance(d),respectively.Moreover,the automatic method is capable of recognizing higher harmonic tweek sferics.The evaluation results of the model suggest that the automatic method is a powerful tool for investigating the long-term variations in the lower ionosphere. 展开更多
关键词 machine learning method tweek atmospherics reflection height D-region ionosphere
下载PDF
Classification of Northeast China Cold Vortex Activity Paths in Early Summer Based on K-means Clustering and Their Climate Impact 被引量:11
10
作者 Yihe FANG Haishan CHEN +3 位作者 Yi LIN Chunyu ZHAO Yitong LIN Fang ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期400-412,共13页
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the... The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable. 展开更多
关键词 northeastern China early summer Northeast China Cold Vortex classification of activity paths machine learning method k-means clustering high-pressure blocking
下载PDF
Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane 被引量:6
11
作者 Kang Guan Yong Gao +5 位作者 Qingfeng Zeng Xingang Luan Yi Zhang Laifei Cheng Jianqing Wu Zhenya Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1733-1743,共11页
The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or... The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or low-pressure chemical vapor infiltration(LPCVI).In the field of ceramic matrix composites(CMCs),methyltrichlorosilane(CH3 SiCl3,MTS)is the most widely used source gas system for SiC,because stoichiometric SiC deposit can be facilitated at 900°C–1300°C.However,the reliability and accuracy of existing numerical models for these processing conditions are rarely reported.In this study,a comprehensive transport model was coupled with gas-phase and surface kinetics.The resulting gas-phase kinetics was confirmed via the measured concentration of gaseous species.The relationship between deposition rate and 24 gaseous species has been effectively evaluated by combining the special superiority of the novel extreme machine learning method and the conventional sticking coefficient method.Surface kinetics were then proposed and shown to reproduce the experimental results.The proposed simulation strategy can be used for different material systems. 展开更多
关键词 Chemical vapor deposition MTS/H2 Gas-phase and surface kinetics Extreme learning machine method Numerical model
下载PDF
Real-time determination of sandy soil stiffness during vibratory compaction incorporating machine learning method for intelligent compaction 被引量:1
12
作者 Zhengheng Xu Hadi Khabbaz +1 位作者 Behzad Fatahi Di Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1609-1625,共17页
An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time asse... An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time assessment of uniformity of the compacted area, accurate determination of the soil stiffness required for quality control and design remains challenging. In this paper, a novel and advanced numerical model simulating the interaction of vibratory drum and soil beneath is developed. The model is capable of evaluating the nonlinear behaviour of underlying soil subjected to dynamic loading by capturing the variations of damping with the cyclic shear strains and degradation of soil modulus. The interaction of the drum and the soil is simulated via the finite element method to develop a comprehensive dataset capturing the dynamic responses of the drum and the soil. Indeed, more than a thousand three-dimensional(3D) numerical models covering various soil characteristics, roller weights, vibration amplitudes and frequencies were adopted. The developed dataset is then used to train the inverse solver using an innovative machine learning approach, i.e. the extended support vector regression, to simulate the stiffness of the compacted soil by adopting drum acceleration records. Furthermore, the impacts of the amplitude and frequency of the vibration on the level of underlying soil compaction are discussed.The proposed machine learning approach is promising for real-time extraction of actual soil stiffness during compaction. Results of the study can be employed by practising engineers to interpret roller drum acceleration data to estimate the level of compaction and ground stiffness during compaction. 展开更多
关键词 Intelligent compaction Machine learning method Finite element modelling Acceleration response
下载PDF
Prediction of Seaward Slope Recession in Berm Breakwaters Using M5' Machine Learning Approach 被引量:1
13
作者 Alireza Sadat HOSSEINI Mehdi SHAFIEEFAR 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期19-32,共14页
In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari'... In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari's experiment results. These experiments consist of two different 2D model tests in two wave flumes, in which the berm recession to different sea state and structural parameters have been studied. Irregular waves with a JONSWAP spectrum were used in both test series. A total of 412 test results were used to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession parameters. In this paper, a new set of equations for berm recession is derived using the M5' model tree as a machine learning approach. A comparison is made between the estimations by the new formula and the formulae recently given by other researchers to show the preference of new M5' approach. 展开更多
关键词 berm breakwater recession experimental data M5' model tree machine learning method
下载PDF
Feedback on a shared big dataset for intelligent TBM PartⅠ:Feature extraction and machine learning methods 被引量:3
14
作者 Jian-Bin Li Zu-Yu Chen +10 位作者 Xu Li Liu-Jie Jing Yun-Pei Zhangf Hao-Han Xiao Shuang-Jing Wang Wen-Kun Yang Lei-Jie Wu Peng-Yu Li Hai-Bo Li Min Yao Li-Tao Fan 《Underground Space》 SCIE EI CSCD 2023年第4期1-25,共25页
This review summarizes the research outcomes and findings documented in 45 journal papers using a shared tunnel boring machine(TBM)dataset for performance prediction and boring efficiency optimization using machine le... This review summarizes the research outcomes and findings documented in 45 journal papers using a shared tunnel boring machine(TBM)dataset for performance prediction and boring efficiency optimization using machine learning methods.The big dataset was col-lected during the Yinsong water diversion project construction in China,covering the tunnel excavation of a 20 km-section with 199 items of monitoring metrics taken with an interval of one second.The research papers were the result of a call for contributions during a TBM machine learning contest in 2019 and covered a variety of topics related to the intelligent construction of TBM.This review com-prises two parts.Part I is concerned with the data processing,feature extraction,and machine learning methods applied by the contrib-utors.The review finds that the data-driven and knowledge-driven approaches in extracting important features applied by various authors are diversified,requiring further studies to achieve commonly accepted criteria.The techniques for cleaning and amending the raw data adopted by the contributors were summarized,indicating some highlights such as the importance of sufficiently high fre-quency of data acquisition(higher than 1 second),classification and standardization for the data preprocessing process,and the appro-priate selections of features in a boring cycle.The review finds that both supervised and unsupervised machine learning methods have been utilized by various researchers.The ensemble and deep learning methods have found wide applications.Part I highlights the impor-tant features of the individual methods applied by the contributors,including the structures of the algorithm,selection of hyperparam-eters,and model validation approaches. 展开更多
关键词 Big data Machine learning method TBM construction Data extraction Machine learning contest
原文传递
Development of a methodology for assessing the adequacy of electric power systems
15
作者 Dmitry S.Krupenev Denis A.Boyarkin Dmitrii V.Iakubovskii 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期543-550,共8页
This study presents the results of a research into the developing a methodology for assessing the adequacy of advanced electric power systems characterized by the integration of various innovative technologies,which c... This study presents the results of a research into the developing a methodology for assessing the adequacy of advanced electric power systems characterized by the integration of various innovative technologies,which complicates their analysis.The methodology development is aimed at solving two main problems:(1)increase the adequacy of modeling the processes that occur in the electric power system and (2)enhance the computational efficiency of the adequacy assessment methodology.This study proposes a new mathematical model to minimize the power shortage and enhance the adequacy of modeling the processes.The model considers quadratic power transmission losses and network coefficients.The computational efficiency of the adequacy assessment methodology is enhanced using efficient random-number generators to form the calculated states of electric power systems and machine learning methods to assess power shortages and other reliability characteristics in the calculated states. 展开更多
关键词 Electric power systems ADEQUACY Power shortage minimization Pseudo-and quasi-random number generation Machine learning methods.
下载PDF
Vibration reliability analysis for aeroengine compressor blade based on support vector machine response surface method
16
作者 高海峰 白广忱 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1685-1694,共10页
To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method(SRSM) is proposed. SRSM integrates the advantages of support vector mac... To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method(SRSM) is proposed. SRSM integrates the advantages of support vector machine(SVM) and traditional response surface method(RSM), and utilizes experimental samples to construct a suitable response surface function(RSF) to replace the complicated and abstract finite element model. Moreover, the randomness of material parameters, structural dimension and operating condition are considered during extracting data so that the response surface function is more agreeable to the practical model. The results indicate that based on the same experimental data, SRSM has come closer than RSM reliability to approximating Monte Carlo method(MCM); while SRSM(17.296 s) needs far less running time than MCM(10958 s) and RSM(9840 s). Therefore,under the same simulation conditions, SRSM has the largest analysis efficiency, and can be considered a feasible and valid method to analyze structural reliability. 展开更多
关键词 VIBRATION reliability analysis compressor blade support vector machine response surface method natural frequency
下载PDF
Ensemble Nonlinear Support Vector Machine Approach for Predicting Chronic Kidney Diseases
17
作者 S.Prakash P.Vishnu Raja +3 位作者 A.Baseera D.Mansoor Hussain V.R.Balaji K.Venkatachalam 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1273-1287,共15页
Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urb... Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urbanizedcountries. The primary objective of this work is to introduce and develop predictive analytics for predicting CKDs. However, prediction of huge samples isbecoming increasingly difficult. Meanwhile, MapReduce provides a feasible framework for programming predictive algorithms with map and reduce functions.The relatively simple programming interface helps solve problems in the scalability and efficiency of predictive learning algorithms. In the proposed work, theiterative weighted map reduce framework is introduced for the effective management of large dataset samples. A binary classification problem is formulated usingensemble nonlinear support vector machines and random forests. Thus, instead ofusing the normal linear combination of kernel activations, the proposed work creates nonlinear combinations of kernel activations in prototype examples. Furthermore, different descriptors are combined in an ensemble of deep support vectormachines, where the product rule is used to combine probability estimates ofdifferent classifiers. Performance is evaluated in terms of the prediction accuracyand interpretability of the model and the results. 展开更多
关键词 Chronic disease CLASSIFICATION iterative weighted map reduce machine learning methods ensemble nonlinear support vector machines random forests
下载PDF
Scientific Successes of Machine Design Ideasin Ancient China
18
作者 Liu Keming Yang Shuzi Zhou Zhaoying(Associate Professor, Huazhong University of Science andTechnology, Wuhan 430074, China)(Member of the Chinese Academy of Sciences (MCAS), President ofHuazhong University of Science and Technology, Wuhan 430074, China) 《Computer Aided Drafting,Design and Manufacturing》 1999年第2期1-11,共11页
With its great achievements in science and technology, China's mechanical engineeringholds an extremely important standing in the history of world civilization. In the long years ofhistory, the Chinese nation has ... With its great achievements in science and technology, China's mechanical engineeringholds an extremely important standing in the history of world civilization. In the long years ofhistory, the Chinese nation has worked innumerable wonders of machines. This paper investigates thehistory of China's Inachine design methods and discusses the machine design ideas in ancient China:1). The system idea in machine design: 2) The idea of machine design: 3) The idea ofstandardization in machine design: 4) The idea of automation in machine design. 展开更多
关键词 China (Machine design method Machine design idea.
全文增补中
System reliability-based robust design of deep foundation pit considering multiple failure modes
19
作者 Li Hong Xiangyu Wang +3 位作者 Wengang Zhang Yongqin Li Runhong Zhang Chunxia Chen 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期169-182,共14页
Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures an... Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution. 展开更多
关键词 System reliability Machine learning method Non-dominated sorting genetic algorithm Robust design Multiple objective optimization models
原文传递
Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiC_p MMC 被引量:3
20
作者 Thella Babu Rao A.Gopala Krishna 《Advances in Manufacturing》 SCIE CAS 2013年第3期265-275,共11页
Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discha... Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discharge machining (WEDM) process for machining SiCp rein forced ZC63 metal matrix composites (MMCs) is investi gated in this work. The WEDM is proven better for its efficiency to machine MMCs among others, while the particulate size and volume percentage of SiCp with the composite are the utmost important factors. These improve the mechanical properties enormously, however reduce the machining performance. Hence the WEDM experiments are conducted by varying the particulate size, volume fraction, pulseon time, pulseoff time and wire tension. In the view of quality cut, the most important performance indicators of WEDM as surface roughness (Ra), metal removal rate (MRR), wire wear ratio (WWR), kerf (Kw) and white layer thickness (WLT) are measured as respon ses. PCA is used as multiresponse optimization technique to derive the composite principal component (CPC) which acts as the overall quality index in the process. Consequently, Taguchi's S/N ratio analysis is applied to optimize the CPC. The derived optimal process responses are confirmed by the experimental validation tests results. The analysis of vari ance is conducted to find the effects of choosing process variables on the overall quality of the machined component.The practical possibility of the derived optimal process conditions is also presented using SEM. 展开更多
关键词 ZC63/SiCp metal matrix composites - Wireelectrical discharge machining (WEDM) - Principalcomponent analysis (PCA)-Taguchi method (TM) ~Analysis of variance (ANOVA)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部