Nonlinear dynamics of the time-delayed Mackey-Glass systems is explored. Coexistent multiple chaotic attractors are found. Attractors with double-scroll structures can be well classified in terms of different return t...Nonlinear dynamics of the time-delayed Mackey-Glass systems is explored. Coexistent multiple chaotic attractors are found. Attractors with double-scroll structures can be well classified in terms of different return times within one period of the delay time by constructing the Poincare section. Synchronizations of the drive-response Mackey-Glass oscillators are investigated. The critical coupling strength for the emergence of generalized synchronization against the delay time exhibits the interesting resonant behaviour. We reveal that stronger resonance effect may be observed when different attractors are applied to the drivers, i.e., more resonance peaks can be found.展开更多
A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adap...A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.展开更多
This paper presents an adaptive step-size modified fractional least mean square (AMFLMS) algorithm to deal with a nonlinear time series prediction. Here we incorporate adaptive gain parameters in the weight adaptati...This paper presents an adaptive step-size modified fractional least mean square (AMFLMS) algorithm to deal with a nonlinear time series prediction. Here we incorporate adaptive gain parameters in the weight adaptation equation of the original MFLMS algorithm and also introduce a mechanism to adjust the order of the fractional derivative adaptively through a gradient-based approach. This approach permits an interesting achievement towards the performance of the filter in terms of handling nonlinear problems and it achieves less computational burden by avoiding the manual selection of adjustable parameters. We call this new algorithm the AMFLMS algorithm. The predictive performance for the nonlinear chaotic Mackey Glass and Lorenz time series was observed and evaluated using the classical LMS, Kernel LMS, MFLMS, and the AMFLMS filters. The simulation results for the Mackey glass time series, both without and with noise, confirm an improvement in terms of mean square error for the proposed algorithm. Its performance is also validated through the prediction of complex Lorenz series.展开更多
For the unforced dynamical non-linear state–space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself ...For the unforced dynamical non-linear state–space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems.With the help of an ortho-normal triangularization method,which relies on numerically stable givens rotation,matrix inversion causes a computational burden,is reduced.Matrix computation possesses many excellent numerical properties such as singularity,symmetry,skew symmetry,and triangularity is achieved by using this algorithm.The proposed method is validated for the prediction of stationary and non-stationary Mackey–Glass Time Series,along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness.By the learning curves regarding mean square error(MSE)are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS.This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays,which is efficient in developing very-large-scale integration(VLSI)applications with non-linear input data.Multiple experiments are carried out to validate the reliability,effectiveness,and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares(EKRLS)algorithm.展开更多
基金Project supported in part by the State Key Program of National Natural Science Foundation of China (Grant No 70431002)the National Basic Research Program of China (Grant No 2007CB814800)+3 种基金the Doctorate Foundation of the State Education Ministry of China (Grant No 20060027009)Supports from the Research Grant Council (RGC)the Hong Kong Baptist University Faculty Research Grant (FRG)the Croucher Foundation of Hong Kong are acknowledged
文摘Nonlinear dynamics of the time-delayed Mackey-Glass systems is explored. Coexistent multiple chaotic attractors are found. Attractors with double-scroll structures can be well classified in terms of different return times within one period of the delay time by constructing the Poincare section. Synchronizations of the drive-response Mackey-Glass oscillators are investigated. The critical coupling strength for the emergence of generalized synchronization against the delay time exhibits the interesting resonant behaviour. We reveal that stronger resonance effect may be observed when different attractors are applied to the drivers, i.e., more resonance peaks can be found.
基金Project supported by the Higher Education Commission of Pakistan
文摘A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.
基金Project supported by the Higher Education Commission of Pakistan
文摘This paper presents an adaptive step-size modified fractional least mean square (AMFLMS) algorithm to deal with a nonlinear time series prediction. Here we incorporate adaptive gain parameters in the weight adaptation equation of the original MFLMS algorithm and also introduce a mechanism to adjust the order of the fractional derivative adaptively through a gradient-based approach. This approach permits an interesting achievement towards the performance of the filter in terms of handling nonlinear problems and it achieves less computational burden by avoiding the manual selection of adjustable parameters. We call this new algorithm the AMFLMS algorithm. The predictive performance for the nonlinear chaotic Mackey Glass and Lorenz time series was observed and evaluated using the classical LMS, Kernel LMS, MFLMS, and the AMFLMS filters. The simulation results for the Mackey glass time series, both without and with noise, confirm an improvement in terms of mean square error for the proposed algorithm. Its performance is also validated through the prediction of complex Lorenz series.
基金funded by Prince Sultan University,Riyadh,Saudi Arabia。
文摘For the unforced dynamical non-linear state–space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems.With the help of an ortho-normal triangularization method,which relies on numerically stable givens rotation,matrix inversion causes a computational burden,is reduced.Matrix computation possesses many excellent numerical properties such as singularity,symmetry,skew symmetry,and triangularity is achieved by using this algorithm.The proposed method is validated for the prediction of stationary and non-stationary Mackey–Glass Time Series,along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness.By the learning curves regarding mean square error(MSE)are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS.This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays,which is efficient in developing very-large-scale integration(VLSI)applications with non-linear input data.Multiple experiments are carried out to validate the reliability,effectiveness,and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares(EKRLS)algorithm.