The solution of a half-plane containing a micro-crack and an edge macro-crack under mixed loads is presented based on the distributed dislocation technique. The complete stress field and stress intensity factors are o...The solution of a half-plane containing a micro-crack and an edge macro-crack under mixed loads is presented based on the distributed dislocation technique. The complete stress field and stress intensity factors are obtained. The finite element model is established to simulate the macro-crack propagation path. The effect of a micro-crack on the macro-crack propagation is analyzed comprehensively. The results show that the shielding effect region is like two ‘petals’ under uniaxial tensile load and rotates with the change in micro-crack angle. For mixed loads, the shielding effect region rotates clockwise with the increasing ratio of applied loads τ∞/σ∞τ∞/σ∞ It is like two tpetals, at τ∞/σ∞ 00 < 2 and divides into two parts from the macro-crack tip at τ∞/σ∞≥ 5. The micro-crack has the attraction effect on the macro-crack propagation path. These results are useful for predicting the fracture or fatigue behaviors of materials containing micro-cracks.展开更多
论文建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)框架的非局部宏微观损伤模型,考虑材料细观物理参数的空间变异性,探讨了材料参数的空间变异性对结构开裂过程的影响。结果表明:考虑材料参数空间变异性后...论文建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)框架的非局部宏微观损伤模型,考虑材料细观物理参数的空间变异性,探讨了材料参数的空间变异性对结构开裂过程的影响。结果表明:考虑材料参数空间变异性后,裂纹扩展路径具有不确定性,建议的模型能够很好地反应材料内在的随机性;随着结构受力情况的复杂化和结构本体缺陷的增多,裂纹开裂模式的变异性也会增大。自相关长度和参数变异系数对结构开裂分析结果有重要影响。展开更多
基金supported by the National Natural Science Foundation of China (11472230)Doctoral Innovation Fund Program of Southwest Jiaotong University (D-CX201836).
文摘The solution of a half-plane containing a micro-crack and an edge macro-crack under mixed loads is presented based on the distributed dislocation technique. The complete stress field and stress intensity factors are obtained. The finite element model is established to simulate the macro-crack propagation path. The effect of a micro-crack on the macro-crack propagation is analyzed comprehensively. The results show that the shielding effect region is like two ‘petals’ under uniaxial tensile load and rotates with the change in micro-crack angle. For mixed loads, the shielding effect region rotates clockwise with the increasing ratio of applied loads τ∞/σ∞τ∞/σ∞ It is like two tpetals, at τ∞/σ∞ 00 < 2 and divides into two parts from the macro-crack tip at τ∞/σ∞≥ 5. The micro-crack has the attraction effect on the macro-crack propagation path. These results are useful for predicting the fracture or fatigue behaviors of materials containing micro-cracks.
文摘论文建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)框架的非局部宏微观损伤模型,考虑材料细观物理参数的空间变异性,探讨了材料参数的空间变异性对结构开裂过程的影响。结果表明:考虑材料参数空间变异性后,裂纹扩展路径具有不确定性,建议的模型能够很好地反应材料内在的随机性;随着结构受力情况的复杂化和结构本体缺陷的增多,裂纹开裂模式的变异性也会增大。自相关长度和参数变异系数对结构开裂分析结果有重要影响。