Optimum genetic delivery for modulating target genes to diseased tissue is a major obstacle for profitable gene therapy.Lipid nanoparticles(LNPs),considered a prospective vehicle for nucleic acid delivery,have demonst...Optimum genetic delivery for modulating target genes to diseased tissue is a major obstacle for profitable gene therapy.Lipid nanoparticles(LNPs),considered a prospective vehicle for nucleic acid delivery,have demonstrated efficacy in human use during the COVID-19 pandemic.This study introduces a novel biomaterial-based platform,M1-polarized macrophage-derived cellular nanovesicle-coated LNPs(M1-C-LNPs),specifically engineered for a combined gene-immunotherapy approach against solid tumor.The dual-function system of M1-C-LNPs encapsulates Bcl2-targeting siRNA within LNPs and immune-modulating cytokines within M1 macrophage-derived cellular nanovesicles(M1-NVs),effectively facilitating apoptosis in cancer cells without impacting T and NK cells,which activate the intratumoral immune response to promote granule-mediating killing for solid tumor eradication.Enhanced retention within tumor was observed upon intratumoral administration of M1-C-LNPs,owing to the presence of adhesion molecules on M1-NVs,thereby contributing to superior tumor growth inhibition.These findings represent a promising strategy for the development of targeted and effective nanoparticle-based cancer genetic-immunotherapy,with significant implications for advancing biomaterial use in cancer therapeutics.展开更多
Obesity-induced chronic inflammation exacerbates multiple types of tissue/organ deterioration and stem cell dysfunction;however,the effects on skeletal tissue and the underlying mechanisms are still unclear.Here,we sh...Obesity-induced chronic inflammation exacerbates multiple types of tissue/organ deterioration and stem cell dysfunction;however,the effects on skeletal tissue and the underlying mechanisms are still unclear.Here,we show that obesity triggers changes in the microRNA profile of macrophage-secreted extracellular vesicles,leading to a switch in skeletal stem/progenitor cell(SSPC)differentiation between osteoblasts and adipocytes and bone deterioration.Bone marrow macrophage(BMM)-secreted extracellular vesicles(BMM-EVs)from obese mice induced bone deterioration(decreased bone volume,bone microstructural deterioration,and increased adipocyte numbers)when administered to lean mice.Conversely,BMM-EVs from lean mice rejuvenated bone deterioration in obese recipients.We further screened the differentially expressed microRNAs in obese BMM-EVs and found that among the candidates,miR-140(with the function of promoting adipogenesis)and miR-378a(with the function of enhancing osteogenesis)coordinately determine SSPC fate of osteogenic and adipogenic differentiation by targeting the Pparα-Abca1 axis.BMM miR-140 conditional knockout mice showed resistance to obesity-induced bone deterioration,while miR-140 overexpression in SSPCs led to low bone mass and marrow adiposity in lean mice.BMM miR-378a conditional depletion in mice led to obesity-like bone deterioration.More importantly,we used an SSPC-specific targeting aptamer to precisely deliver miR-378a-3p-overloaded BMM-EVs to SSPCs via an aptamer-engineered extracellular vesicle delivery system,and this approach rescued bone deterioration in obese mice.Thus,our study reveals the critical role of BMMs in mediating obesity-induced bone deterioration by transporting selective extracellular-vesicle microRNAs into SSPCs and controlling SSPC fate.展开更多
基金supported by a Basic Science Research Program grant through the National Research Foundation of Korea(NRF)grants(Nos.2021R1A2C4001776,RS-2023-00218648,RS-2023-00242443,and 2023-00208913)of the Republic of Koreafunded by the Ministry of Science and ICT(MSIT)of the Republic of Korea+2 种基金a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(No.RS-2023-00266015)the KIST Institutional Program(No.2E32351-23-130)of the Republic of Korea.
文摘Optimum genetic delivery for modulating target genes to diseased tissue is a major obstacle for profitable gene therapy.Lipid nanoparticles(LNPs),considered a prospective vehicle for nucleic acid delivery,have demonstrated efficacy in human use during the COVID-19 pandemic.This study introduces a novel biomaterial-based platform,M1-polarized macrophage-derived cellular nanovesicle-coated LNPs(M1-C-LNPs),specifically engineered for a combined gene-immunotherapy approach against solid tumor.The dual-function system of M1-C-LNPs encapsulates Bcl2-targeting siRNA within LNPs and immune-modulating cytokines within M1 macrophage-derived cellular nanovesicles(M1-NVs),effectively facilitating apoptosis in cancer cells without impacting T and NK cells,which activate the intratumoral immune response to promote granule-mediating killing for solid tumor eradication.Enhanced retention within tumor was observed upon intratumoral administration of M1-C-LNPs,owing to the presence of adhesion molecules on M1-NVs,thereby contributing to superior tumor growth inhibition.These findings represent a promising strategy for the development of targeted and effective nanoparticle-based cancer genetic-immunotherapy,with significant implications for advancing biomaterial use in cancer therapeutics.
基金supported by the National Key R&D Program of China(Grant 2022YFC3601900 to G.H.L.,2022YFC3601903,and 2022YFC3601905 to C.J.L.,2019YFA0111900 to Y.J.)the National Natural Science Foundation of China(Grant Nos.82261160397,82272560,81922017 to C.J.L.)+4 种基金the Hunan Provincial Science and Technology Department(2023JJ30896 to C.J.L.,2023JJ40965 to L.L.)the Key Research and Development Program of Hunan Province(2022SK2023 to C.J.L.)Science and Technology Innovation Program of Hunan Province(2023RC1027 to C.J.L.,2022RC1009 to J.W.,and 2022RC3075 to C.Z.)The NSFC/RGC Joint Research Scheme,the Research Grants Council(UGC)of the Hong Kong Special Administrative Region and the National Natural Science Foundation of China(NSFC/RGC Project No.N_CUHK483/22 to Y.J.)the Center for Neuromusculoskeletal Restorative Medicine[CNRM at InnoHK,to Y.J.]by Innovation and Technology Commission(ITC)of Hong Kong SAR,China.
文摘Obesity-induced chronic inflammation exacerbates multiple types of tissue/organ deterioration and stem cell dysfunction;however,the effects on skeletal tissue and the underlying mechanisms are still unclear.Here,we show that obesity triggers changes in the microRNA profile of macrophage-secreted extracellular vesicles,leading to a switch in skeletal stem/progenitor cell(SSPC)differentiation between osteoblasts and adipocytes and bone deterioration.Bone marrow macrophage(BMM)-secreted extracellular vesicles(BMM-EVs)from obese mice induced bone deterioration(decreased bone volume,bone microstructural deterioration,and increased adipocyte numbers)when administered to lean mice.Conversely,BMM-EVs from lean mice rejuvenated bone deterioration in obese recipients.We further screened the differentially expressed microRNAs in obese BMM-EVs and found that among the candidates,miR-140(with the function of promoting adipogenesis)and miR-378a(with the function of enhancing osteogenesis)coordinately determine SSPC fate of osteogenic and adipogenic differentiation by targeting the Pparα-Abca1 axis.BMM miR-140 conditional knockout mice showed resistance to obesity-induced bone deterioration,while miR-140 overexpression in SSPCs led to low bone mass and marrow adiposity in lean mice.BMM miR-378a conditional depletion in mice led to obesity-like bone deterioration.More importantly,we used an SSPC-specific targeting aptamer to precisely deliver miR-378a-3p-overloaded BMM-EVs to SSPCs via an aptamer-engineered extracellular vesicle delivery system,and this approach rescued bone deterioration in obese mice.Thus,our study reveals the critical role of BMMs in mediating obesity-induced bone deterioration by transporting selective extracellular-vesicle microRNAs into SSPCs and controlling SSPC fate.