Some micromechanics-based constitutive models are presented in this study for porous geomaterials.These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic...Some micromechanics-based constitutive models are presented in this study for porous geomaterials.These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix(von Mises, Green type, Misese Schleicher and Druckere Prager). Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Druckere Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials(sandstone,porous chalk and argillite). Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones.展开更多
文摘Some micromechanics-based constitutive models are presented in this study for porous geomaterials.These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix(von Mises, Green type, Misese Schleicher and Druckere Prager). Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Druckere Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials(sandstone,porous chalk and argillite). Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones.