Substrate is a critical environmental factor affecting the activity of bivalves. To examine the effect of the substrate component on the growth and survival of juvenile sunray surf clam(Mactra chinensis Philippi), a s...Substrate is a critical environmental factor affecting the activity of bivalves. To examine the effect of the substrate component on the growth and survival of juvenile sunray surf clam(Mactra chinensis Philippi), a series of short-term experiments were conducted using a variety of substrates with different ratios of sand to mud. The experimental group cultured without substrate showed poor survival, with all juveniles died after day 20. The juveniles cultured in mud without sand showed a lower survival rate(25.54% ± 0.40% on day 45) than those in other groups. The juveniles cultured in sand without mud, or the mixtures of sand and mud with a ratio of 1:1 and 2:1, respectively, exhibited modest survival at day 45. Maximal weight gain rate(WGR), shell length growth rate(LGR), and specific growth rate(SGR) were observed when the sand concentration was 61.97%, 77.69%, and 64.64%, respectively. As the fast growth and high survival were observed when the sand to mud ratio was 1:1(50% sand) and 2:1(67% sand), a sand concentration of more than 50% is optimal. The optimal concentration of sand in the substrate for rearing juvenile sunray surf clams was 67% which resulted in the fastest growth and highest survival. These results can be used to developing a nursery/farming technique of improving the yield of sunray surf clams.展开更多
To assess the toxicity of heavy metal pollution to marine intertidal shellfish, enzymatic responses and lipid peroxidation were investigated in the clam Mactra vereformis exposed to cadmium under laboratory conditions...To assess the toxicity of heavy metal pollution to marine intertidal shellfish, enzymatic responses and lipid peroxidation were investigated in the clam Mactra vereformis exposed to cadmium under laboratory conditions. Three antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx), two immune defense enzymes (acid phosphatase, ACP; alkaline phosphatase, ALP), and one lipid peroxidation product (malondialdehyde, MDA) were measured in the gills and the hepatopancreas of the clam exposed to 0, 25, 75, and 125 μg/L cadmium for 0, 1, 3, 5, and 7 d. The results show that the concentrations of antioxidant enzymes in the organs soared to a peak value on the first day and then decreased afterwards in most cases. CAT and GPx activities in the hepatopancreas were higher than in the gills, but the SOD activity was lower in the hepatopancreas. ACP activity was unchanged until Day 3 in the hepatopancreas and until Day 5 in gills, when it began to increase. ALP activity showed no significant relationship with Cd treatment. MDA concentrations increased in the two tissues after Cd exposure, peaked on Day 3 in gills, and on Day 5 in hepatopancreas. These observations show that changes in the activities of antioxidant enzymes and ACP reflect the time course of oxidative stress in the clam caused by Cd, and could be used as potential biomarkers for ecotoxicological bioassays of heavy metals.展开更多
To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the...To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases. The pepsin hydrolyzate (PHM) was divided into three fractions according to the molecule weight of its composition, which ranged from 0.5 to 15 kDa. The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium. The peptides existing in the PHM-3 fraction consisted of higher contents of Glu, Ala and Leu, and could produce one type of calcium-peptide complex by powerfully chelating calcium ions. PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests. Additionally, symptoms caused by low calcium bioavailability in ovariectomized rats, such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.展开更多
A bstract The venerid clam(M actra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean a...A bstract The venerid clam(M actra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidifi cation on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO_2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fi ssures. Specimens were incubated in seawater equilibrated with bubbled CO_2-enriched air at(400±25)×10^(-6)(ambient control),(800±25)×10^(-6)(high pCO_2), or(1 200±28)×10^(-6)(extremely high pCO_2), the atmospheric CO_2 concentrations predicted for the years 2014, 2084, and 2154(70-year intervals; two human generations), respectively, in the Representative Concentration Pathway(RCP) 8.5 scenario. The mean shell lengths of larvae were signifi cantly decreased in the high and extremely high pCO_2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO_2 conditions, the cultures exhibited signifi cantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fi ssures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO_2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.展开更多
Polybrominated diphenyl ethers (PBDEs) are ubiquitous global pollutants, which are known to have immune, development, reproduction, and endocrine toxicity in aquatic organisms, including bivalves. 2,2',4,4'-Tetrab...Polybrominated diphenyl ethers (PBDEs) are ubiquitous global pollutants, which are known to have immune, development, reproduction, and endocrine toxicity in aquatic organisms, including bivalves. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is the predominant PBDE congener detected in environmental samples and the tissues of organisms. However, the mechanism of its toxicity remains unclear. In this study, high-throughput sequencing was performed using the clam Mactra veneriformis, a good model for toxicological research, to clarify the transcriptomic response to BDE-47 and the mechanism responsible for the toxicity of BDE-47. The clams were exposed to 5 pg/L BDE-47 for 3 days and the digestive glands were sampled for high-throughput sequencing analysis. We obtained 127 648, 154 225, and 124 985 unigenes by de novo assembly of the control group reads (CG), BDE-47 group reads (BDEG), and control and BDE-47 reads (CG & BDEG), respectively. We annotated 32 176 unigenes from the CG & BDEG reads using the NR database. We categorized 24 401 unigenes into 25 functional COG clusters and 21 749 unigenes were assigned to 259 KEGG pathways. Moreover, 17 625 differentially expressed genes (DEGs) were detected, with 10 028 upregulated DEGs and 7 597 downregulated DEGs. Functional enrichment analysis showed that the DEGs were involved with detoxification, antioxidant defense, immune response, apoptosis, and other functions. The mRNA expression levels of 26 DEGs were verified by quantitative real-time PCR, which demonstrated the high agreement between the two methods. These results provide a good basis for future research using the M. veneriformis model into the mechanism of PBDEs toxicity and molecular biomarkers for BDE-47 pollution. The regulation and interaction of the DEGs would be studied in the future for clarifying the mechanism of PBDEs toxicity.展开更多
基金supported by the earmarked fund for Modern Agro-industry Technology Research System (CARS48)grants from the ‘863’ Project of China (2012 AA10AA400)
文摘Substrate is a critical environmental factor affecting the activity of bivalves. To examine the effect of the substrate component on the growth and survival of juvenile sunray surf clam(Mactra chinensis Philippi), a series of short-term experiments were conducted using a variety of substrates with different ratios of sand to mud. The experimental group cultured without substrate showed poor survival, with all juveniles died after day 20. The juveniles cultured in mud without sand showed a lower survival rate(25.54% ± 0.40% on day 45) than those in other groups. The juveniles cultured in sand without mud, or the mixtures of sand and mud with a ratio of 1:1 and 2:1, respectively, exhibited modest survival at day 45. Maximal weight gain rate(WGR), shell length growth rate(LGR), and specific growth rate(SGR) were observed when the sand concentration was 61.97%, 77.69%, and 64.64%, respectively. As the fast growth and high survival were observed when the sand to mud ratio was 1:1(50% sand) and 2:1(67% sand), a sand concentration of more than 50% is optimal. The optimal concentration of sand in the substrate for rearing juvenile sunray surf clams was 67% which resulted in the fastest growth and highest survival. These results can be used to developing a nursery/farming technique of improving the yield of sunray surf clams.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2007CB407305)the Tianjin Program for Marine Development by Reliance on Science and Technology (No. kx2010-4)+2 种基金the National Marine Public Welfare Research Project of China (No. 200805069)the Natural Science Fundation for Creative Research Groups (No. 40821004)the Knowledge Innovation Key Projects of Chinese Academy of Sciences (No. KZCX2-YW-Q07-03)
文摘To assess the toxicity of heavy metal pollution to marine intertidal shellfish, enzymatic responses and lipid peroxidation were investigated in the clam Mactra vereformis exposed to cadmium under laboratory conditions. Three antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx), two immune defense enzymes (acid phosphatase, ACP; alkaline phosphatase, ALP), and one lipid peroxidation product (malondialdehyde, MDA) were measured in the gills and the hepatopancreas of the clam exposed to 0, 25, 75, and 125 μg/L cadmium for 0, 1, 3, 5, and 7 d. The results show that the concentrations of antioxidant enzymes in the organs soared to a peak value on the first day and then decreased afterwards in most cases. CAT and GPx activities in the hepatopancreas were higher than in the gills, but the SOD activity was lower in the hepatopancreas. ACP activity was unchanged until Day 3 in the hepatopancreas and until Day 5 in gills, when it began to increase. ALP activity showed no significant relationship with Cd treatment. MDA concentrations increased in the two tissues after Cd exposure, peaked on Day 3 in gills, and on Day 5 in hepatopancreas. These observations show that changes in the activities of antioxidant enzymes and ACP reflect the time course of oxidative stress in the clam caused by Cd, and could be used as potential biomarkers for ecotoxicological bioassays of heavy metals.
基金supported by the National Natural Science Foundation of China (No.30900293)the Open Project Program of National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine (No.2011ZYX5-004),which is a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,PAPD(ysxk-2010)
文摘To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases. The pepsin hydrolyzate (PHM) was divided into three fractions according to the molecule weight of its composition, which ranged from 0.5 to 15 kDa. The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium. The peptides existing in the PHM-3 fraction consisted of higher contents of Glu, Ala and Leu, and could produce one type of calcium-peptide complex by powerfully chelating calcium ions. PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests. Additionally, symptoms caused by low calcium bioavailability in ovariectomized rats, such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.
基金Supported by the Korea Polar Research Institute(Nos.PE14150,PM15040)
文摘A bstract The venerid clam(M actra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidifi cation on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO_2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fi ssures. Specimens were incubated in seawater equilibrated with bubbled CO_2-enriched air at(400±25)×10^(-6)(ambient control),(800±25)×10^(-6)(high pCO_2), or(1 200±28)×10^(-6)(extremely high pCO_2), the atmospheric CO_2 concentrations predicted for the years 2014, 2084, and 2154(70-year intervals; two human generations), respectively, in the Representative Concentration Pathway(RCP) 8.5 scenario. The mean shell lengths of larvae were signifi cantly decreased in the high and extremely high pCO_2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO_2 conditions, the cultures exhibited signifi cantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fi ssures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO_2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.
基金Supported by the National Natural Science Foundation of China(No.41206120)the Development Plan of Science and Technology in Yantai(No.2011062)+1 种基金the National Special Research Fund for Non-Profit Marine Sector(No.201205023)the Ludong University Research Funding(No.210-32040301)
文摘Polybrominated diphenyl ethers (PBDEs) are ubiquitous global pollutants, which are known to have immune, development, reproduction, and endocrine toxicity in aquatic organisms, including bivalves. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is the predominant PBDE congener detected in environmental samples and the tissues of organisms. However, the mechanism of its toxicity remains unclear. In this study, high-throughput sequencing was performed using the clam Mactra veneriformis, a good model for toxicological research, to clarify the transcriptomic response to BDE-47 and the mechanism responsible for the toxicity of BDE-47. The clams were exposed to 5 pg/L BDE-47 for 3 days and the digestive glands were sampled for high-throughput sequencing analysis. We obtained 127 648, 154 225, and 124 985 unigenes by de novo assembly of the control group reads (CG), BDE-47 group reads (BDEG), and control and BDE-47 reads (CG & BDEG), respectively. We annotated 32 176 unigenes from the CG & BDEG reads using the NR database. We categorized 24 401 unigenes into 25 functional COG clusters and 21 749 unigenes were assigned to 259 KEGG pathways. Moreover, 17 625 differentially expressed genes (DEGs) were detected, with 10 028 upregulated DEGs and 7 597 downregulated DEGs. Functional enrichment analysis showed that the DEGs were involved with detoxification, antioxidant defense, immune response, apoptosis, and other functions. The mRNA expression levels of 26 DEGs were verified by quantitative real-time PCR, which demonstrated the high agreement between the two methods. These results provide a good basis for future research using the M. veneriformis model into the mechanism of PBDEs toxicity and molecular biomarkers for BDE-47 pollution. The regulation and interaction of the DEGs would be studied in the future for clarifying the mechanism of PBDEs toxicity.