采用激光-MAG(Metal active gas arc welding)复合焊接工艺,以焊缝表面成形、焊缝纵截面形貌和熔深波动程度为工艺稳定性评价依据,借助高速摄像系统和图像处理方法,对焊接过程中飞溅和等离子体两种关键过程信息进行特征识别和定量化表征...采用激光-MAG(Metal active gas arc welding)复合焊接工艺,以焊缝表面成形、焊缝纵截面形貌和熔深波动程度为工艺稳定性评价依据,借助高速摄像系统和图像处理方法,对焊接过程中飞溅和等离子体两种关键过程信息进行特征识别和定量化表征,系统地研究激光功率从5 kW提高到30 kW时,焊接过程关键特征信息与焊接过程稳定性之间的关系。结果表明,随着激光功率的增加,焊缝表面成形出现周期性“上凸-下凹”现象,焊缝内部裂纹和熔深变化特征也随之周期性变化;等离子体面积和飞溅面积均随激光功率的提高呈增加趋势,且两者波动程度和熔深波动程度均呈正相关;等离子体面积增加会导致激光传输过程中能量衰减程度的加剧,使焊缝熔深增加趋势逐渐变缓,其波动程度是影响焊接过程稳定性的关键因素之一。展开更多
The magnetic states of the strongly correlated system plutonium dioxide(PuO_(2)) are studied based on the density functional theory(DFT) plus Hubbard U(DFT +U) method with spin–orbit coupling(SOC) included. A series ...The magnetic states of the strongly correlated system plutonium dioxide(PuO_(2)) are studied based on the density functional theory(DFT) plus Hubbard U(DFT +U) method with spin–orbit coupling(SOC) included. A series of typical magnetic structures including the multiple-k types are simulated and compared in the aspect of atomic structure and total energy. We test LDA, PBE, and SCAN exchange–correlation functionals on PuO_(2) and a longitudinal 3k antiferromagnetic(AFM) ground state is theoretically determined. This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional. Our DFT +U + SOC calculations for the longitudinal 3k AFM ground state suggest a direct gap which is in good agreement with the experimental value. In addition, a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO2. Finally, a comparison between the results of two extensively used DFT +U approaches to this system is made.展开更多
文摘采用激光-MAG(Metal active gas arc welding)复合焊接工艺,以焊缝表面成形、焊缝纵截面形貌和熔深波动程度为工艺稳定性评价依据,借助高速摄像系统和图像处理方法,对焊接过程中飞溅和等离子体两种关键过程信息进行特征识别和定量化表征,系统地研究激光功率从5 kW提高到30 kW时,焊接过程关键特征信息与焊接过程稳定性之间的关系。结果表明,随着激光功率的增加,焊缝表面成形出现周期性“上凸-下凹”现象,焊缝内部裂纹和熔深变化特征也随之周期性变化;等离子体面积和飞溅面积均随激光功率的提高呈增加趋势,且两者波动程度和熔深波动程度均呈正相关;等离子体面积增加会导致激光传输过程中能量衰减程度的加剧,使焊缝熔深增加趋势逐渐变缓,其波动程度是影响焊接过程稳定性的关键因素之一。
基金supported by National Natural Science Foundation of China, (Grant No. 12104034)。
文摘The magnetic states of the strongly correlated system plutonium dioxide(PuO_(2)) are studied based on the density functional theory(DFT) plus Hubbard U(DFT +U) method with spin–orbit coupling(SOC) included. A series of typical magnetic structures including the multiple-k types are simulated and compared in the aspect of atomic structure and total energy. We test LDA, PBE, and SCAN exchange–correlation functionals on PuO_(2) and a longitudinal 3k antiferromagnetic(AFM) ground state is theoretically determined. This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional. Our DFT +U + SOC calculations for the longitudinal 3k AFM ground state suggest a direct gap which is in good agreement with the experimental value. In addition, a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO2. Finally, a comparison between the results of two extensively used DFT +U approaches to this system is made.