A conservative constraint on the rest mass of the photon can be estimated under the assump- tion that the frequency dependence of dispersion from astronomical sources is mainly contributed by the nonzero photon mass e...A conservative constraint on the rest mass of the photon can be estimated under the assump- tion that the frequency dependence of dispersion from astronomical sources is mainly contributed by the nonzero photon mass effect. Photon mass limits have been set earlier through the optical emissions of the Crab Nebula pulsar, but we demonstrate that these limits can be significantly improved with the dispersion measure (DM) measurements of radio pulsars in the Large and Small Magellanic Clouds. The combination of DM measurements of pulsars and distances of the Magellanic Clouds provides a strict upper limit on the photon mass as low as mγ≤2.0 ~ 10-45 g, which is at least four orders of magnitude smaller than the constraint from the Crab Nebula pulsar. Although our limit is not as tight as the current best result (~ 10-47 g) from a fast radio burst (FRB 150418) at a cosmological distance, the cosmological origin of FRB 150418 remains under debate; and our limit can reach the same high precision of FRB 150418 when it has an extragalactic origin ( ~10-45 g).展开更多
The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-N...The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-Newton and Chandra archives contain nearly complete information about the duty cycles of the sources with spin periods Ps 〈 100 s. We have reprocessed the archival data from both observatories and we combined the output products with all the published observations of 31 MC pulsars with Ps 〈 100 s in an attempt to investigate the faintest X-ray emission states of these objects that occur when accretion to the polar caps proceeds at the smallest possible rates. These states determine the so-called propeller lines of the accreting pulsars and yield information about the magnitudes of their surface magnetic fields. We have found that the faintest states of the pulsars segregate into five discrete groups which obey to a high degree of accuracy the theoretical relation between spin period and X-ray luminosity. So the entire population of these pulsars can be described by just five propeller lines and the five corresponding magnetic moments (0.29, 0.53, 1.2, 2.9 and 7.3, in units of 1030 G cma).展开更多
We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with Violent galaxy interactions. We address the key question as to whether at...We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with Violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered protoglobular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.展开更多
基金partially supported by the National Basic Research Program of China(973 Program,Grant Nos.2014CB845800 and 2013CB834900)the National Natural Science Foundation of China(Grant Nos.11322328,11433009,11673068 and 11603076)+4 种基金the Youth Innovation Promotion Association(2011231)the Key Research Program of Frontier Sciences(QYZDBSSW-SYS005)the Strategic Priority Research Program“The Emergence of Cosmological Structures”(Grant No.XDB09000000)of the Chinese Academy of Sciencesthe Natural Science Foundation of Jiangsu Province(Grant No.BK20161096)the Guangxi Key Laboratory for Relativistic Astrophysics
文摘A conservative constraint on the rest mass of the photon can be estimated under the assump- tion that the frequency dependence of dispersion from astronomical sources is mainly contributed by the nonzero photon mass effect. Photon mass limits have been set earlier through the optical emissions of the Crab Nebula pulsar, but we demonstrate that these limits can be significantly improved with the dispersion measure (DM) measurements of radio pulsars in the Large and Small Magellanic Clouds. The combination of DM measurements of pulsars and distances of the Magellanic Clouds provides a strict upper limit on the photon mass as low as mγ≤2.0 ~ 10-45 g, which is at least four orders of magnitude smaller than the constraint from the Crab Nebula pulsar. Although our limit is not as tight as the current best result (~ 10-47 g) from a fast radio burst (FRB 150418) at a cosmological distance, the cosmological origin of FRB 150418 remains under debate; and our limit can reach the same high precision of FRB 150418 when it has an extragalactic origin ( ~10-45 g).
文摘The 80 high-mass X-ray binary (HMXB) pulsars that are known to reside in the Magellanic Clouds (MCs) have been observed by the XMM-Newton and Chandra X-ray telescopes on a regular basis for 15 years, and the XMM-Newton and Chandra archives contain nearly complete information about the duty cycles of the sources with spin periods Ps 〈 100 s. We have reprocessed the archival data from both observatories and we combined the output products with all the published observations of 31 MC pulsars with Ps 〈 100 s in an attempt to investigate the faintest X-ray emission states of these objects that occur when accretion to the polar caps proceeds at the smallest possible rates. These states determine the so-called propeller lines of the accreting pulsars and yield information about the magnitudes of their surface magnetic fields. We have found that the faintest states of the pulsars segregate into five discrete groups which obey to a high degree of accuracy the theoretical relation between spin period and X-ray luminosity. So the entire population of these pulsars can be described by just five propeller lines and the five corresponding magnetic moments (0.29, 0.53, 1.2, 2.9 and 7.3, in units of 1030 G cma).
文摘We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with Violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered protoglobular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.