Objective The Gaoligongshan oblique collisional orogen is located in the southern section of the Hengduan Mountains, and belongs to one of the main Late Yanshanian-Himalayan oblique collisional orogens in the Sanjiang...Objective The Gaoligongshan oblique collisional orogen is located in the southern section of the Hengduan Mountains, and belongs to one of the main Late Yanshanian-Himalayan oblique collisional orogens in the Sanjiang area. Many researchers have studied the geology, geochemistry and geophysics of this region, and many research achievements have been obtained from deep geophysical exploration of the region, especially using the magnetotelluric (MT) sounding technique. However,展开更多
A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995, from Barren Island Volcano, NE India ocean, are presented fo...A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i) Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H20 or pressure or composition of the crystallizing melt; and (ii) morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.). Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self- mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.展开更多
Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low vel...Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low velocity zone (LVZ) in the upper crust beneath the Tengchong volcanic area. The LVZ is in the depth of 7~8 km and may be a smgma chamber or a partial melting body. The result also shows that the LVZ is in the northeastern side of the Rehai hydrothermal field, which is located in another LVZ near the surface. The shallow LVZ may represent a well-developed fracture zone. The strong hydrothermal activity in Rehai area can attribute to the existence of fractures between two LVZs. These fractures are the channels for going upwards of the deep hot fluid.展开更多
Based on ALOS PALSAR images, time series deformation fields of the Agung w^lcann area were obtained using SBAS-InSAR in 2007 -2009. The time series deformation showed obvious inflation around the Agung volcano area, w...Based on ALOS PALSAR images, time series deformation fields of the Agung w^lcann area were obtained using SBAS-InSAR in 2007 -2009. The time series deformation showed obvious inflation around the Agung volcano area, which was positively correlated with time. We modeled the cumulated deformation interferogram based on Mogi point source and vertical prolate spheroid source. The deformation model indicated that the vertical prolate spheroid model fit the observed deformation reasonably well. The magma chamber was loc, ated beneath the eenter of the volcano at a depth of approximately 5 km beneath the summit.展开更多
The major earthquakes often trigger unrest of surrounding volcanic magma chambers.In recent years,three major earthquakes occurred around the Changbaishan volcano,but it was unclear whether these earthquakes triggered...The major earthquakes often trigger unrest of surrounding volcanic magma chambers.In recent years,three major earthquakes occurred around the Changbaishan volcano,but it was unclear whether these earthquakes triggered the unrest of the magma chamber.Based on geodetic data,we analyzed the volcanic activity according to the Global Position System(GPS)and leveling sites time-series and reestimated the location and volume change of magma chamber from 2002 to 2005.Meanwhile,we calculated the dilatational strain variations of the deep magma chamber resulting from coseismic deformations caused by the 1999 Mw7.0 and 2002 Mw7.3 Wangqing deep earthquakes and the 2011 Mw9.0 Tohoku-oki earthquake.Our results show:(1)Changbaishan has experienced four stages of unrest since 1999,and the biggest unrest of the shallow magma chamber occurred from 2002 to 2005;(2)the parameters of the shallow magma chamber simulated by the Mogi and Point Compound Dislocation Model(p DCM)show that the magma chamber is located in the northern part of the crater,with a depth of approximately 7 km.The volume of the magma chamber increased by 25-28×10^(6) m from 2002 to2005;(3)the strain variation beneath the Changbaishan volcano corresponding to the 1999 Wangqing earthquake was small.The 2002 Wangqing earthquake produced an expansion strain of about 4.4 nanostrain on the magma chamber at a depth of 550 km,and probably promoted the unrest of the Changbaishan volcano.The 2011 Tohoku earthquake induced the expansion of the shallow magma chamber and compression of the deep magma chamber.Although this event promoted shallow magma unrest,it inhibited deep magma unrest.This may explain why the Changbaishan did not show obvious unrest after the 2011 Tohoku earthquake.Therefore,more attention should be paid to earthquakes that can promote deep magma unrest in the Changbaishan volcano.展开更多
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbai...Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.展开更多
Saindak is one of the typical porphyry Cu deposits(PCDs)in the Chagai magmatic arc in Pakistan.Ore-forming porphyries at Saindak PCD are mainly composed of tonalite.Here,we use geochemistry of apatite enclosed in plag...Saindak is one of the typical porphyry Cu deposits(PCDs)in the Chagai magmatic arc in Pakistan.Ore-forming porphyries at Saindak PCD are mainly composed of tonalite.Here,we use geochemistry of apatite enclosed in plagioclase phenocrysts from the ore-forming tonalite to constrain the releasing and recharging processes of S and Cl in the underlying parental magma chamber during PCD mineralization.Although apatite inclusions have homogeneous intra-grain S and Cl compositions,there is significant inter-grain S and Cl variations in apatite inclusions located from core to rim in the hosting plagioclase.Such inter-grain S and Cl variation in apatites are coupled with the core-to-rim trends of An,FeO and Mg contents of the hosting plagioclase phenocryst.It indicates that the Saindak PCD likely formed by episodic injection of primitive magmas during the growth of an underlying magma chamber,rather than by one major injection or by addition of mafic melt derived from different source region.Each primitive melt injection introduced essential ore-forming materials such as S and Cl,which were rapidly and effectively released to the coexisting fluids,causing mineralization.Once primitive melt injection stops,signaling the end of growth of underlying magma chamber,mineralization will cease quickly although the hydrothermal system can still survive for a long time.However,the later released fluids are relatively depleted in ore-forming materials,and thus have lower capability to generate mineralization.Accordingly,predominant porphyry-type mineralizations occurred during the growth rather than waning stage of a magmatic system.展开更多
基金the National Natural Science Foundation of China(grants No.41504061 and 41674078)the National Key Research and Development Project of China(grant No. 2016YFC0600302)
文摘Objective The Gaoligongshan oblique collisional orogen is located in the southern section of the Hengduan Mountains, and belongs to one of the main Late Yanshanian-Himalayan oblique collisional orogens in the Sanjiang area. Many researchers have studied the geology, geochemistry and geophysics of this region, and many research achievements have been obtained from deep geophysical exploration of the region, especially using the magnetotelluric (MT) sounding technique. However,
文摘A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i) Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H20 or pressure or composition of the crystallizing melt; and (ii) morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.). Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self- mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.
基金State Natural Science Foundation of China (D49974020), Joint Seismological Science Foundation of China (199110) and Project (95-11-01-06) during Ninth Five-Year Plan from China Seismological Bureau.
文摘Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low velocity zone (LVZ) in the upper crust beneath the Tengchong volcanic area. The LVZ is in the depth of 7~8 km and may be a smgma chamber or a partial melting body. The result also shows that the LVZ is in the northeastern side of the Rehai hydrothermal field, which is located in another LVZ near the surface. The shallow LVZ may represent a well-developed fracture zone. The strong hydrothermal activity in Rehai area can attribute to the existence of fractures between two LVZs. These fractures are the channels for going upwards of the deep hot fluid.
基金supported by the Special Earthquake Research ProjectChina Earthquake Administration(201208009)
文摘Based on ALOS PALSAR images, time series deformation fields of the Agung w^lcann area were obtained using SBAS-InSAR in 2007 -2009. The time series deformation showed obvious inflation around the Agung volcano area, which was positively correlated with time. We modeled the cumulated deformation interferogram based on Mogi point source and vertical prolate spheroid source. The deformation model indicated that the vertical prolate spheroid model fit the observed deformation reasonably well. The magma chamber was loc, ated beneath the eenter of the volcano at a depth of approximately 5 km beneath the summit.
基金support from the National Key Research and Development Program of China(2018YFC1503601)Scientific Research Fund of Institute of Seismology and Institute of Crustal Dynamics,China Earthquake Administration(IS201926297)。
文摘The major earthquakes often trigger unrest of surrounding volcanic magma chambers.In recent years,three major earthquakes occurred around the Changbaishan volcano,but it was unclear whether these earthquakes triggered the unrest of the magma chamber.Based on geodetic data,we analyzed the volcanic activity according to the Global Position System(GPS)and leveling sites time-series and reestimated the location and volume change of magma chamber from 2002 to 2005.Meanwhile,we calculated the dilatational strain variations of the deep magma chamber resulting from coseismic deformations caused by the 1999 Mw7.0 and 2002 Mw7.3 Wangqing deep earthquakes and the 2011 Mw9.0 Tohoku-oki earthquake.Our results show:(1)Changbaishan has experienced four stages of unrest since 1999,and the biggest unrest of the shallow magma chamber occurred from 2002 to 2005;(2)the parameters of the shallow magma chamber simulated by the Mogi and Point Compound Dislocation Model(p DCM)show that the magma chamber is located in the northern part of the crater,with a depth of approximately 7 km.The volume of the magma chamber increased by 25-28×10^(6) m from 2002 to2005;(3)the strain variation beneath the Changbaishan volcano corresponding to the 1999 Wangqing earthquake was small.The 2002 Wangqing earthquake produced an expansion strain of about 4.4 nanostrain on the magma chamber at a depth of 550 km,and probably promoted the unrest of the Changbaishan volcano.The 2011 Tohoku earthquake induced the expansion of the shallow magma chamber and compression of the deep magma chamber.Although this event promoted shallow magma unrest,it inhibited deep magma unrest.This may explain why the Changbaishan did not show obvious unrest after the 2011 Tohoku earthquake.Therefore,more attention should be paid to earthquakes that can promote deep magma unrest in the Changbaishan volcano.
基金Key Project from China Earthquake Administration and the Project (95-11-02-01) from Ministry of Science and Technology (2001DIA10003).
文摘Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0600310)the National Natural Science Foundation of China(Grant Nos.41872083 and 41702091)+2 种基金the Program of the China Geological Survey(Grant No.DD20160024-07)the China Fundamental Research Funds for the Central Universities(Grant No.2652018133)the 111 Project of the Ministry of Science and Technology(Grant No.BP0719021)。
文摘Saindak is one of the typical porphyry Cu deposits(PCDs)in the Chagai magmatic arc in Pakistan.Ore-forming porphyries at Saindak PCD are mainly composed of tonalite.Here,we use geochemistry of apatite enclosed in plagioclase phenocrysts from the ore-forming tonalite to constrain the releasing and recharging processes of S and Cl in the underlying parental magma chamber during PCD mineralization.Although apatite inclusions have homogeneous intra-grain S and Cl compositions,there is significant inter-grain S and Cl variations in apatite inclusions located from core to rim in the hosting plagioclase.Such inter-grain S and Cl variation in apatites are coupled with the core-to-rim trends of An,FeO and Mg contents of the hosting plagioclase phenocryst.It indicates that the Saindak PCD likely formed by episodic injection of primitive magmas during the growth of an underlying magma chamber,rather than by one major injection or by addition of mafic melt derived from different source region.Each primitive melt injection introduced essential ore-forming materials such as S and Cl,which were rapidly and effectively released to the coexisting fluids,causing mineralization.Once primitive melt injection stops,signaling the end of growth of underlying magma chamber,mineralization will cease quickly although the hydrothermal system can still survive for a long time.However,the later released fluids are relatively depleted in ore-forming materials,and thus have lower capability to generate mineralization.Accordingly,predominant porphyry-type mineralizations occurred during the growth rather than waning stage of a magmatic system.