期刊文献+
共找到846篇文章
< 1 2 43 >
每页显示 20 50 100
Potential of Magmatic Ni-Cu Deposits of the Hualong Block,Qilian Mountains
1
作者 Zhaowei Zhang Xi’an Center of Geological Survey,China Geological Survey,Xi’an 710054,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期167-167,共1页
The Jinchuan magmatic Ni-Cu deposit,located in the Longshou Mountain region,is the largest producer of Ni and Cu in China,with mineralization being related to mafic and ultramafic magmatism.Previous studies have shown... The Jinchuan magmatic Ni-Cu deposit,located in the Longshou Mountain region,is the largest producer of Ni and Cu in China,with mineralization being related to mafic and ultramafic magmatism.Previous studies have shown that the Longshou Mountain was combined with the Qilian Mountains before Neoproterozoic,and was separated from each other due to the opening of late Qilian oceanic basin in the Paleozoic.The relict Precambrian microcontinents of the Longshou Mountain and Qilian Mountain 展开更多
关键词 magmatISM ni-cu Jinchuan deposit
下载PDF
Time scales and length scales in magma ?ow pathways and the origin ofmagmatic Ni-Cu-PGE ore deposits 被引量:4
2
作者 Stephen J.Barnes Jesse C.Robertson 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期77-87,共11页
Ore forming processes involve the redistribution of heat, mass and momentum by a wide range of processes operating at different time and length scales. The fastest process at any given length scale tends to be the dom... Ore forming processes involve the redistribution of heat, mass and momentum by a wide range of processes operating at different time and length scales. The fastest process at any given length scale tends to be the dominant control. Applying this principle to the array of physical processes that operate within magma flow pathways leads to some key insights into the origins of magmatic Ni-Cu-PGE sulfide ore deposits. A high proportion of mineralised systems, including those in the super-giant Noril'sk-Talnakh camp, are formed in small conduit intrusions where assimilation of country rock has played a major role. Evidence of this process is reflected in the common association of sulfides with varitextured contaminated host rocks containing xenoliths in varying stages of assimilation. Direct incorporation of S-bearing country rock xenoliths is likely to be the dominant mechanism for generating sulfide liquids in this setting. However, the processes of melting or dissolving these xenoliths is relatively slow compared with magma flow rates and, depending on xenolith lithology and the composition of the carrier magma, slow compared with settling and accumulation rates. Chemical equilibration between sulfide droplets and silicate magma is slower still, as is the process of dissolving sulfide liquid into initially undersaturated silicate magmas. Much of the transport and deposition of sulfide in the carrier magmas may occur while sulfide is still incorporated in the xenoliths, accounting for the common association of magmatic sulfide-matrix ore breccias and contaminated "taxitic" host rocks. Effective upgrading of so-formed sulfide liquids would require repetitive recycling by processes such as reentrainment, back flow or gravity flow operating over the lifetime of the magma transport system as a whole. In contrast to mafic-hosted systems, komatiite-hosted ores only rarely show an association with externally-derived xenoliths, an observation which is partially due to the predominant formation of ores in lava flows rather than deep-seated intrusions, but also to the much shorter timescales of key component systems in hotter, less viscous magmas. Nonetheless, multiple cycles of deposition and entrainment are necessary to account for the metal contents of komatiite-hosted sulfides. More generally, the time and length scale approach introduced here may be of value in understanding other igneous processes as well as non-magmatic mineral systems. 展开更多
关键词 magmatic ore deposits ASSIMILATION INTRUSIONS Nickel Norilsk KOMATIITES
下载PDF
Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems:Features,formation and exploration 被引量:9
3
作者 Xieyan Song Yushan Wang Liemeng Chen 《Geoscience Frontiers》 SCIE CAS 2011年第3期375-384,共10页
The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposi... The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposits; (2) fractional crystallization and crustal contamination, particularly the input of sulfur from crustal rocks, resulting in sulfide immiscibility and segregation; and (3) the timing of sulfide concentration in the intrusion. The super-large magmatic Ni-Cu sulfide deposits around the world have been found in small mafic-ultramafic intrusions, except for the Sudbury deposit. Studies in the past decade indicated that the intrusions hosting large and super-large magmatic sulfide deposits occur in magma conduits, such as those in China, including Jinchuan (Gansu), Yangliuping (Sichuan), Kalatongke (Xinjiang), and Hongqiling (Jilin). Magma conduits as open magma systems provide a perfect environment for extensive concentration of immiscible sulfide melts, which have been found to occur along deep regional faults. The origin of many mantle-derived magmas is closely associated with mantle plumes, intracontinental rifts, or post-collisional extension. Although it has been confirmed that sulfide immiscibility results from crustal contamination, grades of sulfide ores are also related to the nature of the parental magmas, the ratio between silicate magma and immiscible sulfide melt, the reaction between the sulfide melts and newly injected silicate magmas, and fractionation of the sulfide melt. The field relationships of the ore-bearing intrusion and the sulfide ore body are controlled by the geological features of the wall rocks. In this paper, we attempt to demonstrate the general characteristics, formation mechanism,tectonic settings, and indicators of magmatic sulfide deposits occurring in magmatic conduits which would provide guidelines for further exploration. 展开更多
关键词 magmatic ni-cu sulfidedeposit Magma conduit Sulfide immiscibility Tectonic extension China
下载PDF
Platinum-group Elements Geochemistry of the Yangliuping Magmatic Ni-Cu-PGE Sulfide Deposit:Implications of Its Genetic Link with the Extrusive Basalts 被引量:4
4
作者 ZHENGJianbin CAOZhimin +2 位作者 SONGXieyan ANWei1 LIUJi 《Journal of Ocean University of China》 SCIE CAS 2004年第1期93-98,共6页
Primitive mantle normalized Platinum group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world class magmatic Ni Cu P... Primitive mantle normalized Platinum group elements (PGE) concentration patterns for the Zhengziyanwo intrusion and Dashibao Formation basalts are of positive slope, similar to most of the world class magmatic Ni Cu PGE sulfide deposits. Characters of this intrusion and its related ores and Dashibao Formation basalts are their negative Pt anomaly and high concentration of Rh relative to Pt and Pd, facts being interpreted to be the results of crystallization and fractionation of Pt alloys and spinel phase free crystallization history for the magma, respectively. PGE parameters of the Dashibao Formation basalts are consistent with the general trend of those found for the Zhengziyanwo intrusion, and this might infer a genetic link between them. 展开更多
关键词 magmatic ni-cu-PGE sulfide deposit PGE concentration pattern Pt-anomaly Yangliuping BASALT
下载PDF
Magmatic Sulfide Ni-Cu Deposits in China 被引量:1
5
作者 Tang Zhongli Gansu Bureau of Geology and Mineral Resources, Lanzhou 730000 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期12-16,共5页
Deep seated magmatic liquation injection deposits form a major type of magmatic sulfide deposit in China. The reserves of nickel and copper in this type of deposit may attain several hundred thousand tons (e.g.Hongq... Deep seated magmatic liquation injection deposits form a major type of magmatic sulfide deposit in China. The reserves of nickel and copper in this type of deposit may attain several hundred thousand tons (e.g.Hongqi 7 and Karatunggu) to nearly ten million tons (e.g.Jinchuan). Those deposits can be classified as large or superlarge deposits. The ore grade is relatively high, commonly with w (Ni)>1 %. The mineralized intrusions are small in size, generally only 0.0 n km 2 to 0. n km 2, with the largest one not exceeding a few km 2. Before intruding, the primary magmas have undergone liquation and partial crystallization at depth; as a result, the magmas have partitioned into barren magma, ore bearing magma, ore rich magma and ore magma, which then ascended and injected into the present locations once or multiple times, to form ore deposits. The above mentioned mineralizing process is known as deep seated magmatic liquation injection mineralization. The volume of the barren magma is generally much larger than those of the ore bearing magma, ore rich magma and ore magma. In the ascending process, most of the barren magma intruded into different locations or outpoured onto the ground surface, forming intrusions or lava flows. The rest barren magma, ore bearing magma, ore rich magma and ore magma may either multiple times inject into the same place in which rocks and ores are formed or separately inject into different spaces to form rocks and ores. Such deep seated magmatic liquation injection deposits have a much smaller volume, greater ore potential and higher ore grade than those of in situ magmatic liquation deposits. Consequently, this mineralizing process leads to the formation of large deposits in small intrusions. 展开更多
关键词 deep seated liquation INJECTION spatio temporal distribution magmatic sulfide deposit.
下载PDF
Classification of Magmatic Sulphide Deposits in China and Mineralization of Small Intrusions 被引量:6
6
作者 TANG Zhongli YAN Haiqing +1 位作者 JIAO Jiangang LI Xiaohu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期412-419,共8页
Many important metal resources, such as Ni (Cu, Co), PGE, exist in magmatic sulfide deposits, are a hot spot in geological research. We divide the magmatic sulphide deposits in China into four types according to the... Many important metal resources, such as Ni (Cu, Co), PGE, exist in magmatic sulfide deposits, are a hot spot in geological research. We divide the magmatic sulphide deposits in China into four types according to their tectonic setting, intruding mode, ore deposit mode, main metallogenic elements. The four types are as follows: (1) Small-intrusion deposits in paleo-continent; (2) Smallintrusion deposits in continental flood basalt; (3) Small-intrusion deposits in orogenic belt; and (4) The deposits associated with ophiolites. On the basis of the classification, we put forward that the main magmatic metallogenic type in China is small-intrusion metallogeny, and describe its characteristics from small intrusions related concept, three geologic settings, three volcanic-intrusive assemblages and metallogenic key factors. According to the experiences of prospecting at home and abroad, we point out that there is big potential in prospecting small-intrusion deposits, which need further study. At last, we indicate that small-intrusion metallogeny not only widely distributes in mafic-ultramafic intrusions, but also has an important economic value and scientific significance in intermediate-acid intrusions. 展开更多
关键词 magmatic sulfide deposits CLASSIFICATION small intrusions METALLOGENESIS
下载PDF
Rare Earth Element Geochemistry on Magmatic Rocks and Gold Deposits in Shizishan Ore-Field of Tongling, China 被引量:5
7
作者 徐晓春 陆三明 +2 位作者 谢巧勤 储国正 熊亚平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期617-625,共9页
REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and... REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and Ce anomalous values, and ∑REE, ∑LREE/∑HREE regular changes, which indicates that their magmas come from the same source and their digenetic mechanism is fractional crystallization. In three gold deposits, the mineral ores and related altered rocks have similar chondrite-normalized REE patterns and sharp Eu positive anomalous values. The REE contents reduced from the magmatic rocks to skamization or alteration magmatic rocks, skam type ores, sulphide type ores, wall-rocks limestone or marble. The REE geochemical characteristics of the ores and related rocks show that primary fluids originated from magmatic differentiation in lower pressure of shallow crust, ore-forming hydrothermal solutions gained REE and mineralization elements further from leaching the magmatic rocks, then superimposed and reformed the limestones or marbles and deposited ore-forming material. 展开更多
关键词 REE geochemistry magmatic rocks gold deposits Shizishan ore-field TONGLING rare earths
下载PDF
Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of No. I Complex from the Shitoukengde Ni–Cu Sulfide Deposit in the Eastern Kunlun Orogen, Western China: Implications for the Magmatic Source, Geodynamic Setting and Genesis 被引量:13
8
作者 LI Liang SUN Fengyue +7 位作者 LI Bile LI Shijin CHEN Guangjun WANG Wei YAN Jiaming ZHAO Tuofei DONG Jun ZHANG Dexin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期106-126,共21页
The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small u... The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian. 展开更多
关键词 Sr-Nd-Pb-Hf isotopes crustal contamination oceanic slab break-off post-collisionalextension Shitoukengde ni-cu deposit Eastern Kunlun Orogen
下载PDF
Geological Characteristics and Metallogenic Setting of Representative Magmatic Cu-Ni Deposits in the Tianshan-Xingmeng Orogenic Belt, Central Asia 被引量:1
9
作者 HAN Chunming XIAO Wenjiao +7 位作者 SU Benxun ZHANG Xiaohui WAN Bo SONG Dongfang ZHANG Zhiyong ZHANG Jien WANG Zhongmei XIE Mingcai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1205-1218,共14页
A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains... A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300-265 Ma) to the Late Indosinian(225-200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east. 展开更多
关键词 Geochronology magmatic Cu-Ni-Co-PGE deposits Tianshan-Xingmeng Orogenic Belt Central Asia
下载PDF
Dating Magmatic Hornblende and Biotite and Hydrothermal Sericite by Laser Probe Technique:Constraints on Genesis of Wangershan Gold Deposit,Eastern Shandong Province,China 被引量:2
10
作者 LiJianwei VasconcelosPM +1 位作者 ZhouMF Duzgoren-AydinNS 《Journal of China University of Geosciences》 SCIE CSCD 2003年第4期339-348,共10页
The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, ... The Wangershan gold deposit and spatially related Shangzhuang granite, eastern Shandong Province, have been precisely dated by 40 Ar/ 39 Ar laser incremental heating technique. Magmatic hornblende and biotite, collected from the Shangzhuang granites, yielded well-defined and reproducible plateau ages at 128.1-127.5 and 124.4-124.1 Ma (2 σ ), measuring the cooling ages of the intrusion at ca. 500 ℃ and 300-350 ℃, respectively. Hydrothermal sericite extracted from auriferous vein gave high-quality plateau ages between (120.6±0.3) Ma and (120.0±0.4) Ma (2 σ ). Given the similarity of the closure temperature for argon diffusion (300-350 ℃) in the sericite mineral to the homogenization temperature of primary fluid inclusions in the quartz from gold ores, and the intergrowth of sericite with native gold, present 40 Ar/ 39 Ar sericite ages can be reliably interpreted in terms of the mineralization age for the Wangershan deposit. 40 Ar/ 39 Ar hornblende and biotite ages permit an estimate for the cooling rate of the Shangzhuang granite at about 50 ℃/Ma. There are abundant intermediate-mafic dikes in most gold camps of eastern Shandong, whose ages of formation have been previously constrained mainly at 121-119 Ma. The temporal association between the Shangzhuang granite, the Wangershan gold deposit, and the widespread dikes confirms that intrusive activity, gold mineralization, and dike emplacement in this region were broadly coeval, reflecting significant continental lithosphere thinning and resulting crustal extension of Early Cretaceous in eastern China. 展开更多
关键词 40Ar/39 Ar dating cooling age magmatism mineralization Wangershan gold deposit.
下载PDF
Magmatic Hydrothermal Origin of the Wenyu Copper Polymetallic Deposit, Southern Lancangjiang Zone, SW China 被引量:2
11
作者 YANG Yongfei FAN Wenyu +1 位作者 LUO Maojin SHI Hongzhao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1769-1770,共2页
The Wenyu copper polymetallic deposit, with proven reserves of about 0.23 Mt Cu, 394 t Ag and 0.04 Mt Pb, is located in the central part of the Lancangjiang volcanic rock belt (Fig. l a), which is one of the most po... The Wenyu copper polymetallic deposit, with proven reserves of about 0.23 Mt Cu, 394 t Ag and 0.04 Mt Pb, is located in the central part of the Lancangjiang volcanic rock belt (Fig. l a), which is one of the most potential copper polymetallic exploration areas in SW China. 展开更多
关键词 CU Southern Lancangjiang Zone SW China magmatic Hydrothermal Origin of the Wenyu Copper Polymetallic deposit
下载PDF
Magmatic Evolution and Mineralization Process of the Super-Large Shihuiyao Rb–Nb–Ta Deposit,Southern Great Xing'an Range,China 被引量:3
12
作者 ZHOU Zhenhua CHE Hewei +1 位作者 MA Xinghua GAO Xu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2275-2276,共2页
Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
关键词 In Nb magmatic Evolution and Mineralization Process of the Super-Large Shihuiyao Rb Ta deposit Southern Great Xing’an Range China
下载PDF
Sea-floor exhalative sedimentary and magmatic hydrothermal superimposition on the Bainiuchang polymetallic deposit in Yunnan Province: REE geochemical evidence 被引量:4
13
作者 ZHU Chaohui ZHANG Qian +3 位作者 SHAO Shuxun ZHU Xiaoqing HE Yuliang WANG Dapeng 《Chinese Journal Of Geochemistry》 EI CAS 2007年第3期267-275,共9页
In order to study the characteristics of sea-floor exhalative sedimentary and magmatic hydrothermal superimposition on the Bainiuchang polymetallic deposit, the REE compositions of the granites, host-rocks and ores ha... In order to study the characteristics of sea-floor exhalative sedimentary and magmatic hydrothermal superimposition on the Bainiuchang polymetallic deposit, the REE compositions of the granites, host-rocks and ores have been systematically analyzed by ICP-MS. As viewed from their REE compositions, the granites show obvious negative Eu anomalies and weak negative Ce anomalies. According to their REE characteristics, the host-rocks were derived partly from sea-floor exhalative sediments. In terms of their REE compositions, the ores can be divided into two groups: one group, of which the samples were collected from the Baiyang segment relatively far away from the Bozhushan granite batholith, possesses positive Eu anomalies or no Eu anomaly and negative Ce anomalies, indicating that ore-forming hydrothermal fluid was relatively reductive and its temperature was higher than 250 ℃. Furthermore, the coinstantaneous presence of positive Eu anomalies and negative Ce anomalies indicate that the convective mixing of a little amount of seawater with hydrothermal fluid had happened while ores were precipitated on ancient sea floor. The other group, of which the samples were mainly collected from the Chuanxindong and Duimenshan segments near the Bozhushan granite batholith, has similar chondrite-monalized REE distribution patterns to those of the magmatic rocks. But as a whole, the REE characteristics of both groups change gradually starting from the Bozhushan granite batholith. Based on the REE characteristics of the granites, host-rocks and ores, it is suggested that the ore-forming metals seem to have come from several different sources. 展开更多
关键词 海床 沉积物 稀土 矿石
下载PDF
The Sachakou Deposit in West Kunlun of Xinjiang: A Pb-Zn Polymetallic Deposit Associated with Magmatic Metasomatism of Carbonate Rock 被引量:1
14
作者 ZHOU Menglin LIU Yingchao 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期883-884,共2页
Objective The Sachakou Pb-Zn polymetallic deposit is located in Hetian County, Xinjiang (geographical coordinates of E78° 57' 54.30"-78°59' 53.63", N34° 39' 27.50"-34° 40' 57.21"). It be... Objective The Sachakou Pb-Zn polymetallic deposit is located in Hetian County, Xinjiang (geographical coordinates of E78° 57' 54.30"-78°59' 53.63", N34° 39' 27.50"-34° 40' 57.21"). It belongs to the West Kunlun orogenic belt on the northwest edge of the Qinghai-Tibet Plateau and is connected to the Sanjiang orogenic belt to the south (Spurlin et al., 2005). In recent years, a series of Pb-Zn mineralized spots and deposits have been discovered in this area one after another, which is called the Huoshaoyun ore concentration area. Among them, the Sachakou Pb-Zn deposit has reserves up to140 Mt, which has reached a large scale. However, the study on the genesis of deposits in this area has only just begun. This work studied the genesis ofthis Pb-Zn deposit in order to provide new ideas for the genesis of regional deposits and regional prospecting. 展开更多
关键词 PB A Pb-Zn Polymetallic deposit Associated with magmatic Metasomatism of Carbonate Rock The Sachakou deposit in West Kunlun of Xinjiang ZN
下载PDF
Magmatic Evolution and Mineralization of Porphyry Copper-Gold Deposits in the Duolong Ore Concentration Area, Tibet 被引量:1
15
作者 ZHANG Hai MA Dongfang +1 位作者 ZHANG Hong ZHU Xiangping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1767-1768,共2页
The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metal... The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones. 展开更多
关键词 area LAKE magmatic Evolution and Mineralization of Porphyry Copper-Gold deposits in the Duolong Ore Concentration Area TIBET
下载PDF
Mineral Chemical Characteristics of Gabbro-diorite for Shulouqiu Uranium Deposit in Northern Guangdong, China: Constraint on the Magmatic Source
16
作者 ZHONG Fujun PAN Jiayong +2 位作者 LIU Guoqi LIU Wenquan QI Jiaming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期109-110,共2页
1 Introduction The uranium deposits related with Indosinian and Yanshanian granite have provided the abundant resource of uranium during the past several decades in China.The deposits are mainly distributing in the Gu... 1 Introduction The uranium deposits related with Indosinian and Yanshanian granite have provided the abundant resource of uranium during the past several decades in China.The deposits are mainly distributing in the Guidong granite 展开更多
关键词 China Constraint on the magmatic Source Mineral Chemical Characteristics of Gabbro-diorite for Shulouqiu Uranium deposit in Northern Guangdong
下载PDF
MAGMATIC CRYPTO-EXPLOSION AND EXPLOSIVE PIPE TYPE PORPHYRY AU,AG ORE DEPOSITS
17
《Geotectonica et Metallogenia》 1994年第Z2期60-61,共2页
关键词 PIPE ORE magmatic CRYPTO-EXPLOSION AND EXPLOSIVE PIPE TYPE PORPHYRY AU AG ORE depositS AG
下载PDF
MODELS OF ORE FORMING FOR BASE AND PRECIOUS DEPOSITS IN TECTONIC MAGMATIC ACTIVITY (TMA)REGIONS
18
作者 GORZCHEVSKY D.I +1 位作者 KONSTANTINOV M.M 《Geotectonica et Metallogenia》 1994年第Z2期47-47,共1页
关键词 TMA)REGIONS MODELS OF ORE FORMING FOR BASE AND PRECIOUS depositS IN TECTONIC magmatic ACTIVITY
下载PDF
Advances in Research of Mineral Chemistry of Magmatic and Hydrothermal Biotites 被引量:4
19
作者 TANG Pan CHEN Yuchuan +5 位作者 TANG Juxing WANG Ying ZHENG Wenbao LENG Qiufeng LIN Bin WU Chunneng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1947-1966,共20页
Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore f... Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore forming processes.This paper summarizes research results of magmatic and hydrothermal biotites exemplified by the Lakange porphyry Cu–Mo deposit and the Qulong porphyry Cu deposit in the Gangdese porphyry–skarn metallogenic belt,Tibet.Biotite mineral chemistry can provide critical insights into classification,geothermometer,geothermobarometry,oxygen fugacity,petrogenesis and tectonic setting,evaluating magmatic-hydrothermal process by halogen and halogen fugacity ratios,and distinguishing between barren and mineralized rocks.Biotite provides the latest mineralogical evidence on metallogenic prognosis and prospecting evaluation for porphyry Cu polymetallic deposits or magmatic hydrothermal deposits. 展开更多
关键词 magmatic biotites hydrothermal biotites mineral chemistry porphyry deposit Lakange QULONG GANGDESE
下载PDF
Magmatic-Hydrothermal Superlarge Metallogenic Systems——A Case Study of the Nannihu Ore Field 被引量:11
20
作者 王长明 成秋明 +2 位作者 张寿庭 邓军 谢淑云 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期391-403,共13页
Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢),... Located in the Qinling (秦岭) molybdenum metallogenic belt on the southern margin of North China craton, the Nannihu (南泥湖) molybdenum (-tungsten) ore field, consisting of the Nannihu, Sandaozhuang (三道幢), and Shangfang (上房) deposits, represents a superlarge skarn-porphyry molybdenum (-tungsten) accumulation. Outside the ore field, there are some hydrothermal lead-zinc-silver deposits found in recent years, for example, the Lengshuibeigou (冷水北沟), Yindonggou (银涧沟), Yangshuwa (杨树凹), and Yinhegou (银河沟) deposits. Ore-forming fluid geochemistry indicates that these deposits belong to the same metallogenic system. The hydrothermal solutions were mainly derived from primary magmatic water in the early stage and from the mixture of the primary magmatic water and meteoric water in the later stage, with an obvious decreasing tendency in temperature, salinity and gas-liquid ratio of fluid inclusions. Sulfur and lead isotope data show that the ore-forming substances and related porphyries were mainly derived from the lower crust, and a hidden magmatic chamber is indicated by aeromagnetic anomaly and drill hole data indicate that the Nannihu granite body extends to being larger and larger with depth increasing. The large-scale mineralization was the consequence of lithospheric extension during the late stage of the tectonic regime when the main compressional stress changed from NS-trending to EW-trending. 展开更多
关键词 magmatic-hydrothermal metallogenic system superlarge deposit ore-forming fluid dynamic process Nannihu ore field
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部