Keban magmatics consist of plutonic rocks of acidic and intermediate compositions with diffe rent phases. They are the equivalent of surface rocks. In the current study on plutonic rocks, general petrographic features...Keban magmatics consist of plutonic rocks of acidic and intermediate compositions with diffe rent phases. They are the equivalent of surface rocks. In the current study on plutonic rocks, general petrographic features, disequilibrium textures such as skeletal formation in minerals, poikilitic texture, oscillatory zoning, and mineral fragmentation, and growth states are observed. Besides these microscopic properties, the existence of rounded mafic enclaves of various sizes, petrographic synplutonic dykes, and field data support the idea that mafic and felsic magmas are mixed. Keban magmatics have I-type, metaluminous-peraluminous characteristics. Diorites and quartz diorites have low-K tholeiitic features, whereas tonalites have low-K calcalkaline features. Compared with diorites, tonalites are richer in terms of LREE (Rock/ Chondrite);Rb, Sr, and Ba (LILE);and Hf, Zr, Th, and U (HFSE) elements. LILE enrichment, which signals the crustal contamination of mantle- originated magmas, is particularly observable in tonalites. In both rock groups, the negative anomaly of Nb is a sign of similarity of pluton to the subduction zone magma series. Based on the K-Ar geochronology dating of amphibole minerals, the ages of these rocks are found to be 75.65 ± 1.5 and 59.77 ± 1.2 Ma in tonalites and 84.76 ± 1.8 and 84.35 ± 1.7 Ma in diorite and quartz diorites. The 87Sr/86Sr isotope ratios in tonalites are 0.705405 and 0.706053, whereas these ratios are 0.704828 and 0.704754 in dioritic rocks. Pb isotope ratios are similar in both rock types.展开更多
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat...Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.展开更多
In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
In this study,we report for thefirst time an Early Palaeozoic basement diorite from the drilled well Nirona-A in the Banni Half-Graben of the Kutch basin,western India.The 40Ar–39Ar dates provided a plateau age of 441...In this study,we report for thefirst time an Early Palaeozoic basement diorite from the drilled well Nirona-A in the Banni Half-Graben of the Kutch basin,western India.The 40Ar–39Ar dates provided a plateau age of 441.84±2.66 Ma and another pseudo plateau of 441.28±5.82 to 388.08±16.65 Ma for the basement diorite.These ages constrain the basement formation age to the Late Ordovician-Early Silurian period.The obtained basement ages are correlatable with the later part of Cambro-Ordovician alkaline magmatism that has been reported from the Huqf area in Central Oman,whereas their lithological and petrographic correlativity with base-ment diorites occurring in the Dinsi Body of Nagar Parkar igneous complex in Pakistan can also be envisaged.The geochemical studies characterized the diorite with enrich-ment of LILE(Rb,Ba,and K)and LREE(La,Ce,Nd),strong depletion of HFSE(Nb,Sr,P,and Ti),along with weakly negative Eu anomalies.The geochemical signatures indicate their petrogenetic affiliation with mantle-derived magmas,as well as their tectonic setting to be arc-related,having post-collisional continental-arc type affinity.The*440 Ma basement of Kutch,therefore,appears to rep-resent the later thermal event associated with the reworked Neoproterozoic subduction-related suite from Greater India’s northwest edge,which has implications for Gond-wana assembly in the northwest Indian subcontinent.展开更多
Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic m...Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision.展开更多
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th...The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.展开更多
Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metaga...Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.展开更多
The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian t...The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian tectonic evolution of the Aktau–Yili terrane.It is one of the largest Precambrian crustal blocks in the western Central Asian orogenic belt.The U-Pb single-grain zircon ages indicate that granite-gneisses formed from the same source and crystallised in the early Neoproterozoic ca.930–920 Ma.The chemical composition of gneisses corresponds to A2-type granites.The whole-rock Nd isotopic characteristics(εNd(t)=−4.9 to−1.0 and TNd(DM-2st)=1.9 to 1.7 Ga)indicate the involvement of Paleoproterozoic crustal rocks in magma generation.Early Neoproterozoic ca.930–920 Ma A-type granitoids in the Aktau–Yili terrane of South and Central Kazakhstan might reflect within-plate magmatism adjacent to the collisional belt or a local extension setting in back-arc areas of the continental arc.展开更多
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gnei...The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite.展开更多
The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4...The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.展开更多
The spatiotemporal extension/expansion of mine areas is affected by multiple factors.So far,very little has been done to examine the interaction between mine areas and political or economic realities.The(ultra‐)mafic...The spatiotemporal extension/expansion of mine areas is affected by multiple factors.So far,very little has been done to examine the interaction between mine areas and political or economic realities.The(ultra‐)mafic magmatic mines in China played a specific role in supporting national development and providing an ideal research subject for monitoring their interrelationship.In this study,remote sensing and mining‐related GIS data were used to identify and analyze 1233(ultra‐)mafic magmatic mine area polygons in China,which covered approximately 322.96 km2 of land and included a V–Ti–Fe mine,a copper–nickel mine,a chromite mine,an asbestos mine,and a diamond mine.It was found that(1)the areal expansion of mines is significantly related to the mine types,perimeter,topography,and population density.(2)The mine area variation also reflects market and policy realities.The temporal expansion of the mine area from 2010 to 2020 followed an S‐shaped pattern(with the turning point occurring in 2014),closely related to iron overcapacity and tightened mining policies.(3)The complexity(D)of the mine area may reflect mine design and excavation practices.To be specific,lower D indicates early‐stage or artisanal/small‐scale mining,whereas higher D represents large‐scale mining.This study demonstrates that the detailed mapping of mine land can serve as an indicator to implement miningrelated market and policy changes.The(ultra‐)mafic mines area data set can be accessed at https://zenodo.org/record/7636616#.Y-p0uXaZOa0.展开更多
The Neoproterozoic evolution of the Jiangnan Orogen is important for understanding the tectonic history of South China.As a volcanic-sedimentary sequence developed in the Nanhua rift,the Banxi Group preserves the reco...The Neoproterozoic evolution of the Jiangnan Orogen is important for understanding the tectonic history of South China.As a volcanic-sedimentary sequence developed in the Nanhua rift,the Banxi Group preserves the records of important magmatic and tectonic events linked to the assembly and breakup of the Rodinia supercontinent.In this study,we report the results from whole-rock major-and trace-element concentrations,with zircon LA-(MC)-ICP-MS U-Pb ages,trace elements and Lu-Hf isotopic compositions of sandstones from the Banxi Group.The rocks are characterized by high SiO_(2)(65.88%–82.76%,with an average of 75.50%)contents,moderate(Fe_(2)O_(3)^(T)+MgO)(1.81%–7.78%,mean:3.79%)and TiO_(2)(0.39%–0.54%,mean:0.48%),low K_(2)O/Na_(2)O(0.03–0.40,mean:0.10)ratios and low Al_2O_(3)/SiO_(2)(0.11–0.24,mean:0.15)ratios.The sandstones have highΣREE contents(mean:179.1 ppm),with chondrite-normalized REE patterns similar to the upper crust and PAAS,showing enriched LREE((La/Yb)_N mean:14.85),sub-horizontal HREE curves and mild Eu(Eu/Eu^(*):0.75–0.89,mean:0.81)negative anomalies.Their geochemical characteristics resemble those of passive continental margin sandstones.Most of the zircons are magmatic in origin and yield a U-Pb age distribution with three peaks:a major age peak at 805 Ma and two subordinate age peaks at 1990 Ma and 2470 Ma,implying three major magmatic sources.The Neoproterozoic zircons haveε_(Hf)(t)values ranging from-47.4 to 12.4(mostly-20 to 0),suggesting a mixture of some juvenile arc-derived material and middle Paleoproterozoic heterogeneous crustal sources.The Hf model ages of middle Paleoproterozoic zircons(~1990 Ma)with negativeε_(Hf)(t)values(-12.65 to-6.21,Ave.=-9.8)concentrated around the Meso-Paleoarchean(mean T_(DM)^(C)=3.3–3.1 Ga).For late Neoarchean detrital zircons(~2470 Ma),ε_(Hf)(t)values are divided into two groups,one with negative values(-9.16 to-0.6)with model ages of 3.5–2.9 Ga,the other featuring positive values(1.0 to 3.9)with model ages of 2.9–2.7 Ga,recording a crustal growth event at~2.5 Ga.Neoproterozoic zircons show volcanic arc affinities with partly intraplate magmatic features.We propose that the Banxi Group formed in a rift basin within a passive continental margin setting,which derived detritus from felsic to intermediate rocks from the Yangtze Block and a small amount of arc volcanic rocks.The middle Paleoproterozoic detrital zircon data suggest Columbia-aged basement lies beneath the western Jiangnan orogen.展开更多
The progressive indentation of India into Eurasia generated an E-W-trending orthogonal collision belt and a N-S-trending oblique collision belt.Compiling available data reveals that~70%of the Cenozoic igneous rocks in...The progressive indentation of India into Eurasia generated an E-W-trending orthogonal collision belt and a N-S-trending oblique collision belt.Compiling available data reveals that~70%of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE-trending,~550-km long and~250-km wide magmatic zone(CMZ)that once separated the orthogonal and oblique collision belts.The Latitude 26°N Line is now its southern boundary.The onset timing of magmatism of the CMZ varies gradually from~55 Ma in the westernmost part to~27 Ma in the easternmost.Then the magmatism successively occurred and suddenly stopped at~25 Ma.The segmented and coherent chemical variation trends found suggest that the CMZ magmatic rocks were formed due to partial melting of the heterogeneous upper mantle and crusts of Eurasia.Subduction of Paleo-and Neotethyan oceanic plates generated this compositional and mineralogical heterogeneity.Combined with available geophysical data,the CMZ was diachronously formed in response to asthenosphere upwelling induced by NNW-SSE-direction lithosphere stretching.The difference in responses of the orthogonal and oblique collision belts to the indentation of the Indian continent has led to this lithosphere stretching.展开更多
Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyze...Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.展开更多
The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The pe...The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.展开更多
The Habo deposit is a typical porphyry Cu-Mo deposit in the Ailaoshan–Red River metallogenic belt.Ore minerals in the Habo deposit typically occur as veins in the monzonite porphyry.Zircon U-Pb dating suggests that t...The Habo deposit is a typical porphyry Cu-Mo deposit in the Ailaoshan–Red River metallogenic belt.Ore minerals in the Habo deposit typically occur as veins in the monzonite porphyry.Zircon U-Pb dating suggests that the monzonite porphyry formed at 35.07±0.38 Ma.The monzonite porphyry is characterized by high SiO_(2),Al_(2)O_(3),K_(2)O and Na_(2)O contents,with A/CNK ratios ranging from 0.97 to 1.02.All samples exhibit fractionated REE patterns,characterized by high(La/Yb)N ratios(9.4–13.6,average of 11.2).They show adakite-like geochemical features,high Sr concentrations(627–751 ppm,average of 700 ppm),low Y concentrations(15.13–16.86 ppm,average of 15.81 ppm)and high Sr/Y values(39.5–47.4,average of 44.3).These samples have high initial^(87)Sr/^(86)Sr ratios(0.7074–0.7076)and negativeεNd(t)values(-5.1 to-3.7),whereas the zirconεHf(t)values range from-2.2 to+0.4,suggesting that the monzonite porphyry was derived from the partial melting of a thickened juvenile lower crust.The oxygen fugacity,calculated on the basis of the chemical composition of the amphiboles,shows?NNO values ranging from+1.65 to+2.16(average of 1.94)and lg(fO_(2))ranging from-12.72 to-11.99(average of-12.25),indicating that the monzonite porphyry has high oxygen fugacity.Zircons have high Ce^(4+)/Ce^(3+)ratios(29.29–164.24,average of 84.92),with high?FMQ values ranging from+0.50 to+1.51(average of 0.87)and high lg(fO_(2))values ranging from-14.72 to-12.85(average of-14.07),which also indicates that the oxygen fugacity of the magma was high.The dissolved water content of the Habo monzonite porphyry is 9.5–11.5 wt%,according to the geochemical characteristics,zircon-saturation thermometry(692–794°C)and the mineral phases(amphibole,no plagioclase)in the deep magma chamber.Combined with previous studies,we propose that the high oxygen fugacity and high water content of magma played key roles in controlling the formation of the Habo and other Cu-Mo-Au deposits in the Ailaoshan–Red River metallogenic belt.展开更多
The Assam-Meghalaya Gneissic Complex(AMGC)of northeast India contains numerous Pan-African granitic bodies that have been attributed to post-collisional rift-related magmatism.The present study is concerned with the f...The Assam-Meghalaya Gneissic Complex(AMGC)of northeast India contains numerous Pan-African granitic bodies that have been attributed to post-collisional rift-related magmatism.The present study is concerned with the first appraisal of intermediate magmatism(diorite,monzonite,and monzodiorite)found in the Borjuri Pluton of Mikir Massif,which is the eastern extension of AMGC.The diorites are strongly metaluminous and exhibit enriched LREE([La/Yb]N=1.63–7.37)with respect to HREE([Gd/Yb]N=1.95–2.27).The studied rocks do not show any mineralogical or textural indication of metamorphism.Tectonic discrimination diagrams indicate that these rocks originated in a within-plate tectonic setting.The lower Mg#(33.49–38.69),low Cr(below detection limit),and Ni(27–41 ppm)contents along with elemental ratios such as Rb/Sr(0.32–0.95),La/Nb(0.49–4.21),and Nb/Ce(0.11–0.64)suggest a crustal source for the diorites.Discrimination diagrams coupled with elemental ratios suggest that these rocks originated due to partial melting of mafic components in the crust with possible contribution from mantle materials.The P–T conditions of diorite emplacement(7.4 kbar,688℃)were calculated using the amphibole-plagioclase geothermobarometer.Geochemical and geochronological data of the Pan-African felsic plutons reported from the AMGC indicate that these rocks were emplaced in a post-collisional extensional regime.The Borjuri Pluton is in close proximity with the Kathalguri Pluton,which has been reported as a product of PanAfrican magmatism.In view of the numerous extensional Pan-African felsic magmatism reported from the AMGC and based on the close vicinity of the Borjuri diorites with the Kathalguri granites,we speculate that the Borjuri diorites are products of the Pan-African post-collisional magmatism.展开更多
The Xiejiaba and Fuqiangbei plutons form part of the newly identified Neoproterozoic Niushan complex,which is located in the southern South Qinling belt(SQB).The plutons are compositionally similar,were emplaced at 75...The Xiejiaba and Fuqiangbei plutons form part of the newly identified Neoproterozoic Niushan complex,which is located in the southern South Qinling belt(SQB).The plutons are compositionally similar,were emplaced at 750–711Ma,and provide insights into Neoproterozoic tectonism within the South Qinling belt.The Xiejiaba pluton contains diorite,quartz diorite,granodiorite,and granite phases,all of which are sub-alkaline and have variable major element compositions with negative correlations between SiO_(2)and MgO,TFe_(2)O_(3),Al_(2)O_(3),CaO,TiO_(2)and P_(2)O_(5).These rocks are enriched in light rare earth elements(LREEs)and large ion lithophile elements(LILEs)and have negative Nb,Ta,P and Ti anomalies,all of which are indicative of arc-type magmatism.The Fuqiangbei pluton contains granitoids that are compositionally similar to the rocks in the Xiejiaba pluton.Samples from these plutons have similarε_(Nd)(t)values(1.24–5.99)but very variable(^(87)Sr/^(86)Sr)i values(0.7010–0.7054).Combining these data with the geochemical data for these rocks suggests that the magmas that formed the Niushan complex were derived from the crust–mantle boundary.This,combined with the results of previous research,suggests that the transition from low pressure-low temperature to low pressure-high temperature conditions within a subduction zone caused melting during a period of late subduction and backarc extension.This constrain the timing of subduction within the South Qinling belt and the northern Yangtze Block(YB)to 750–711 Ma,with this Neoproterozoic subduction associated with an ocean to the north overprinting an existing continental rift-type tectonic setting within the northern margin of the Yangtze Block and the South Qinling belt.展开更多
Orogenic peridotite is an important component of orogenic belts and retains crucial information on mantle magmatic activity,slab subduction,and melt or fluid metasomatism.To determine the source of the mantle-derived ...Orogenic peridotite is an important component of orogenic belts and retains crucial information on mantle magmatic activity,slab subduction,and melt or fluid metasomatism.To determine the source of the mantle-derived parental magma of the peridotite and to investigate the metasomatism that it experienced,we undertook an integrated study of the petrography,whole-rock major-and trace-element compositions,in situ zircon U-Pb geochronology,and mineral majorand trace-element compositions of an early Paleozoic ultramafic complex in the North Wulan area of North Qaidam.The Halihatu ultramafic-mafic complex is composed of dunite,pyroxene peridotite,and gabbro,which are characteristic of Alaskan-type complexes.The dunite yields a weighted mean^(206)Pb/^(238)U age of 479±5 Ma(MSWD=0.7),which reflects the age of the metasomatism rather than the crystallization age of the ultramafic magma.The peridotites have high Mg^(#)(89.8-91.8)and Cr contents(2419-5190 ppm),low Al_(2)O_(3)(0.20-1.68 wt%)and Ni(289-1012 ppm)contents,and high olivine Fo contents(87-91),suggesting a large degree(~15%-22%)of partial melting of lithospheric ultramafic rocks followed by variable degrees of fractional crystallization of olivine and pyroxene.This is consistent with estimates of 15%-22.3%partial melting calculated using the Cr#of spinel crystals and with the low Yb(0.04-0.33 ppm)and Y(0.72-1.29 ppm)contents of clinopyroxene crystals.Whole-rock trace-element patterns show enrichment in large ion lithophile elements and depletion in high field strength elements,along with high Al_(2)O_(3)(2.10-6.47 wt%)and low TiO_(2)(0.01-0.21 wt%)contents of clinopyroxene crystals,suggesting an arc magma cumulate trend.These features,along with the high olivine Fo contents(87-91 ppm),imply that the Halihatu peridotite is an Alaskan-type crustal cumulates derived from Mgrich hydrous basaltic melts.The high estimated f O_(2)(FMQ+1.97 to FMQ+3.81)further supports the idea that they formed in an arc setting.The Ni/Co and Ni/Mn ratios and cumulate textures of the olivine,quenched boundaries between mafic and felsic melts,and the occurrence of tremolite and phlogopite reflect interactions between the Halihatu peridotite and injected silicate and carbonatitic melts in the lower crust.Therefore,we propose a new cumulate-infiltration model for the petrogenesis of Alaskan-type ultramafic complexes,which improves our understanding of the nature of Alaskan-type continental arc root.展开更多
文摘Keban magmatics consist of plutonic rocks of acidic and intermediate compositions with diffe rent phases. They are the equivalent of surface rocks. In the current study on plutonic rocks, general petrographic features, disequilibrium textures such as skeletal formation in minerals, poikilitic texture, oscillatory zoning, and mineral fragmentation, and growth states are observed. Besides these microscopic properties, the existence of rounded mafic enclaves of various sizes, petrographic synplutonic dykes, and field data support the idea that mafic and felsic magmas are mixed. Keban magmatics have I-type, metaluminous-peraluminous characteristics. Diorites and quartz diorites have low-K tholeiitic features, whereas tonalites have low-K calcalkaline features. Compared with diorites, tonalites are richer in terms of LREE (Rock/ Chondrite);Rb, Sr, and Ba (LILE);and Hf, Zr, Th, and U (HFSE) elements. LILE enrichment, which signals the crustal contamination of mantle- originated magmas, is particularly observable in tonalites. In both rock groups, the negative anomaly of Nb is a sign of similarity of pluton to the subduction zone magma series. Based on the K-Ar geochronology dating of amphibole minerals, the ages of these rocks are found to be 75.65 ± 1.5 and 59.77 ± 1.2 Ma in tonalites and 84.76 ± 1.8 and 84.35 ± 1.7 Ma in diorite and quartz diorites. The 87Sr/86Sr isotope ratios in tonalites are 0.705405 and 0.706053, whereas these ratios are 0.704828 and 0.704754 in dioritic rocks. Pb isotope ratios are similar in both rock types.
基金supported by National Natural Science Foundation of China(Grant Nos.42025301,41730213 and 41890831)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0702)+2 种基金Hong Kong RGC GRF(Grant No.17307918)HKU Internal Grants for Member of Chinese Academy of Sciences(Grant No.102009906)for Distinguished Research Achievement Award(Grant No.102010100)。
文摘Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
文摘In this study,we report for thefirst time an Early Palaeozoic basement diorite from the drilled well Nirona-A in the Banni Half-Graben of the Kutch basin,western India.The 40Ar–39Ar dates provided a plateau age of 441.84±2.66 Ma and another pseudo plateau of 441.28±5.82 to 388.08±16.65 Ma for the basement diorite.These ages constrain the basement formation age to the Late Ordovician-Early Silurian period.The obtained basement ages are correlatable with the later part of Cambro-Ordovician alkaline magmatism that has been reported from the Huqf area in Central Oman,whereas their lithological and petrographic correlativity with base-ment diorites occurring in the Dinsi Body of Nagar Parkar igneous complex in Pakistan can also be envisaged.The geochemical studies characterized the diorite with enrich-ment of LILE(Rb,Ba,and K)and LREE(La,Ce,Nd),strong depletion of HFSE(Nb,Sr,P,and Ti),along with weakly negative Eu anomalies.The geochemical signatures indicate their petrogenetic affiliation with mantle-derived magmas,as well as their tectonic setting to be arc-related,having post-collisional continental-arc type affinity.The*440 Ma basement of Kutch,therefore,appears to rep-resent the later thermal event associated with the reworked Neoproterozoic subduction-related suite from Greater India’s northwest edge,which has implications for Gond-wana assembly in the northwest Indian subcontinent.
基金co-supported by the National Natural Science Foundation of China (Grant No. 42272267)the Research Grants of Chinese Academy of Geological Sciences (Grant No. JKYQN202309)+3 种基金the National Key Research and Development Project "Key scientific issues of transformative technology" (Grant No. 2019YFA0708604)the second Tibetan Plateau Scientific Expedition and Research Program (STEP) Grant (Grant Nos. 2019QZKK0802, 2019QZKK0901)the Scientific Investigation on Basic Resources of Ministry of Science and Technology (Grant No. 2021FY100101)the Geological Survey of China (Grant Nos. DD20221630, DD20242126)。
文摘Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision.
基金supported by the Iran National Science Foundation(INSF)(Grant No.98012578)projects from the National Natural Science Foundation of China(Grant Nos.41473033,41673031)。
文摘The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.
文摘Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.
基金financially supported by the Russian Science Foundation (RSF) (Grant No. 22-77-00082)financially supported of grant 075-15-2021-680 of the Ministry of Science and Higher Education of the Russian Federation
文摘The combined petrographic,petrological,geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian tectonic evolution of the Aktau–Yili terrane.It is one of the largest Precambrian crustal blocks in the western Central Asian orogenic belt.The U-Pb single-grain zircon ages indicate that granite-gneisses formed from the same source and crystallised in the early Neoproterozoic ca.930–920 Ma.The chemical composition of gneisses corresponds to A2-type granites.The whole-rock Nd isotopic characteristics(εNd(t)=−4.9 to−1.0 and TNd(DM-2st)=1.9 to 1.7 Ga)indicate the involvement of Paleoproterozoic crustal rocks in magma generation.Early Neoproterozoic ca.930–920 Ma A-type granitoids in the Aktau–Yili terrane of South and Central Kazakhstan might reflect within-plate magmatism adjacent to the collisional belt or a local extension setting in back-arc areas of the continental arc.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金The study was conducted within the framework of the state task(topic ID 0350-2019-0007)and supported by grant 20-55-44002-Mong_a of the Russian Foundation for Basic Research.
文摘The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite.
基金funded by projects of the China Geological Survey(Nos.DD20242070,DD20230763,DD20221695,DD20190379,and DD20160346)。
文摘The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.
文摘The spatiotemporal extension/expansion of mine areas is affected by multiple factors.So far,very little has been done to examine the interaction between mine areas and political or economic realities.The(ultra‐)mafic magmatic mines in China played a specific role in supporting national development and providing an ideal research subject for monitoring their interrelationship.In this study,remote sensing and mining‐related GIS data were used to identify and analyze 1233(ultra‐)mafic magmatic mine area polygons in China,which covered approximately 322.96 km2 of land and included a V–Ti–Fe mine,a copper–nickel mine,a chromite mine,an asbestos mine,and a diamond mine.It was found that(1)the areal expansion of mines is significantly related to the mine types,perimeter,topography,and population density.(2)The mine area variation also reflects market and policy realities.The temporal expansion of the mine area from 2010 to 2020 followed an S‐shaped pattern(with the turning point occurring in 2014),closely related to iron overcapacity and tightened mining policies.(3)The complexity(D)of the mine area may reflect mine design and excavation practices.To be specific,lower D indicates early‐stage or artisanal/small‐scale mining,whereas higher D represents large‐scale mining.This study demonstrates that the detailed mapping of mine land can serve as an indicator to implement miningrelated market and policy changes.The(ultra‐)mafic mines area data set can be accessed at https://zenodo.org/record/7636616#.Y-p0uXaZOa0.
基金financially supported by the Natural Science Foundation of China(Grant No.41972198)the Cooperation Foundation of the Key Laboratory of Mineralogy and Metallogeny,Chinese Academy of Sciences(Grant No.KLMM20180201)the Scientific Research Starting Foundation of Central South University。
文摘The Neoproterozoic evolution of the Jiangnan Orogen is important for understanding the tectonic history of South China.As a volcanic-sedimentary sequence developed in the Nanhua rift,the Banxi Group preserves the records of important magmatic and tectonic events linked to the assembly and breakup of the Rodinia supercontinent.In this study,we report the results from whole-rock major-and trace-element concentrations,with zircon LA-(MC)-ICP-MS U-Pb ages,trace elements and Lu-Hf isotopic compositions of sandstones from the Banxi Group.The rocks are characterized by high SiO_(2)(65.88%–82.76%,with an average of 75.50%)contents,moderate(Fe_(2)O_(3)^(T)+MgO)(1.81%–7.78%,mean:3.79%)and TiO_(2)(0.39%–0.54%,mean:0.48%),low K_(2)O/Na_(2)O(0.03–0.40,mean:0.10)ratios and low Al_2O_(3)/SiO_(2)(0.11–0.24,mean:0.15)ratios.The sandstones have highΣREE contents(mean:179.1 ppm),with chondrite-normalized REE patterns similar to the upper crust and PAAS,showing enriched LREE((La/Yb)_N mean:14.85),sub-horizontal HREE curves and mild Eu(Eu/Eu^(*):0.75–0.89,mean:0.81)negative anomalies.Their geochemical characteristics resemble those of passive continental margin sandstones.Most of the zircons are magmatic in origin and yield a U-Pb age distribution with three peaks:a major age peak at 805 Ma and two subordinate age peaks at 1990 Ma and 2470 Ma,implying three major magmatic sources.The Neoproterozoic zircons haveε_(Hf)(t)values ranging from-47.4 to 12.4(mostly-20 to 0),suggesting a mixture of some juvenile arc-derived material and middle Paleoproterozoic heterogeneous crustal sources.The Hf model ages of middle Paleoproterozoic zircons(~1990 Ma)with negativeε_(Hf)(t)values(-12.65 to-6.21,Ave.=-9.8)concentrated around the Meso-Paleoarchean(mean T_(DM)^(C)=3.3–3.1 Ga).For late Neoarchean detrital zircons(~2470 Ma),ε_(Hf)(t)values are divided into two groups,one with negative values(-9.16 to-0.6)with model ages of 3.5–2.9 Ga,the other featuring positive values(1.0 to 3.9)with model ages of 2.9–2.7 Ga,recording a crustal growth event at~2.5 Ga.Neoproterozoic zircons show volcanic arc affinities with partly intraplate magmatic features.We propose that the Banxi Group formed in a rift basin within a passive continental margin setting,which derived detritus from felsic to intermediate rocks from the Yangtze Block and a small amount of arc volcanic rocks.The middle Paleoproterozoic detrital zircon data suggest Columbia-aged basement lies beneath the western Jiangnan orogen.
基金supported by the Ministry of Sciences and Technology of China(Grant No.2022YFF0800901)the Natural Science Foundation of China(Grant No.92055206)。
文摘The progressive indentation of India into Eurasia generated an E-W-trending orthogonal collision belt and a N-S-trending oblique collision belt.Compiling available data reveals that~70%of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE-trending,~550-km long and~250-km wide magmatic zone(CMZ)that once separated the orthogonal and oblique collision belts.The Latitude 26°N Line is now its southern boundary.The onset timing of magmatism of the CMZ varies gradually from~55 Ma in the westernmost part to~27 Ma in the easternmost.Then the magmatism successively occurred and suddenly stopped at~25 Ma.The segmented and coherent chemical variation trends found suggest that the CMZ magmatic rocks were formed due to partial melting of the heterogeneous upper mantle and crusts of Eurasia.Subduction of Paleo-and Neotethyan oceanic plates generated this compositional and mineralogical heterogeneity.Combined with available geophysical data,the CMZ was diachronously formed in response to asthenosphere upwelling induced by NNW-SSE-direction lithosphere stretching.The difference in responses of the orthogonal and oblique collision belts to the indentation of the Indian continent has led to this lithosphere stretching.
基金Supported by the National Key Research and Development Program of China(No.2022YFC3102200)the Guangdong Research Foundation(No.2019BT02H594)+3 种基金the National Natural Science Foundation of China(No.42076071)the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0204)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22020303)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-XH-2021-2-02)。
文摘Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.
基金provided by the Opening Foundation of State Key Laboratory of Continental Dynamics(Grant No.21LCD08),Northwest University,China.
文摘The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.
基金supported by grants from the National Key Research and Development Program of China(Grant Nos.2016YFC0600310 and 2019YFA0708602)the National Natural Science Foundation of China(Grant Nos.41702091,41872083 and 42022014)+2 种基金the Yunnan Applied Basic Research Project(Grant No.202101AT070073)the China Fundamental Research Funds for the Central Universities(Grant No.2652018133)the Scientific Research Fund of the Yunnan Provincial Education Department(Grant No.2022Y016)。
文摘The Habo deposit is a typical porphyry Cu-Mo deposit in the Ailaoshan–Red River metallogenic belt.Ore minerals in the Habo deposit typically occur as veins in the monzonite porphyry.Zircon U-Pb dating suggests that the monzonite porphyry formed at 35.07±0.38 Ma.The monzonite porphyry is characterized by high SiO_(2),Al_(2)O_(3),K_(2)O and Na_(2)O contents,with A/CNK ratios ranging from 0.97 to 1.02.All samples exhibit fractionated REE patterns,characterized by high(La/Yb)N ratios(9.4–13.6,average of 11.2).They show adakite-like geochemical features,high Sr concentrations(627–751 ppm,average of 700 ppm),low Y concentrations(15.13–16.86 ppm,average of 15.81 ppm)and high Sr/Y values(39.5–47.4,average of 44.3).These samples have high initial^(87)Sr/^(86)Sr ratios(0.7074–0.7076)and negativeεNd(t)values(-5.1 to-3.7),whereas the zirconεHf(t)values range from-2.2 to+0.4,suggesting that the monzonite porphyry was derived from the partial melting of a thickened juvenile lower crust.The oxygen fugacity,calculated on the basis of the chemical composition of the amphiboles,shows?NNO values ranging from+1.65 to+2.16(average of 1.94)and lg(fO_(2))ranging from-12.72 to-11.99(average of-12.25),indicating that the monzonite porphyry has high oxygen fugacity.Zircons have high Ce^(4+)/Ce^(3+)ratios(29.29–164.24,average of 84.92),with high?FMQ values ranging from+0.50 to+1.51(average of 0.87)and high lg(fO_(2))values ranging from-14.72 to-12.85(average of-14.07),which also indicates that the oxygen fugacity of the magma was high.The dissolved water content of the Habo monzonite porphyry is 9.5–11.5 wt%,according to the geochemical characteristics,zircon-saturation thermometry(692–794°C)and the mineral phases(amphibole,no plagioclase)in the deep magma chamber.Combined with previous studies,we propose that the high oxygen fugacity and high water content of magma played key roles in controlling the formation of the Habo and other Cu-Mo-Au deposits in the Ailaoshan–Red River metallogenic belt.
基金DST-SERB grant vide Project No.CRG/2020/002635CSIR-JRF fellowship No.09/1236(11154)/2021-EMR-I。
文摘The Assam-Meghalaya Gneissic Complex(AMGC)of northeast India contains numerous Pan-African granitic bodies that have been attributed to post-collisional rift-related magmatism.The present study is concerned with the first appraisal of intermediate magmatism(diorite,monzonite,and monzodiorite)found in the Borjuri Pluton of Mikir Massif,which is the eastern extension of AMGC.The diorites are strongly metaluminous and exhibit enriched LREE([La/Yb]N=1.63–7.37)with respect to HREE([Gd/Yb]N=1.95–2.27).The studied rocks do not show any mineralogical or textural indication of metamorphism.Tectonic discrimination diagrams indicate that these rocks originated in a within-plate tectonic setting.The lower Mg#(33.49–38.69),low Cr(below detection limit),and Ni(27–41 ppm)contents along with elemental ratios such as Rb/Sr(0.32–0.95),La/Nb(0.49–4.21),and Nb/Ce(0.11–0.64)suggest a crustal source for the diorites.Discrimination diagrams coupled with elemental ratios suggest that these rocks originated due to partial melting of mafic components in the crust with possible contribution from mantle materials.The P–T conditions of diorite emplacement(7.4 kbar,688℃)were calculated using the amphibole-plagioclase geothermobarometer.Geochemical and geochronological data of the Pan-African felsic plutons reported from the AMGC indicate that these rocks were emplaced in a post-collisional extensional regime.The Borjuri Pluton is in close proximity with the Kathalguri Pluton,which has been reported as a product of PanAfrican magmatism.In view of the numerous extensional Pan-African felsic magmatism reported from the AMGC and based on the close vicinity of the Borjuri diorites with the Kathalguri granites,we speculate that the Borjuri diorites are products of the Pan-African post-collisional magmatism.
基金supported by the National Natural Science Foundation of China(Grant No.41872219)the Key Research and Development Program of Shaanxi(Grant No.2019SF-245)+1 种基金the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-222)an integrated research project of Integrated Exploration of China Geological Survey(Grant No.WKZB1911BJM300369/002)。
文摘The Xiejiaba and Fuqiangbei plutons form part of the newly identified Neoproterozoic Niushan complex,which is located in the southern South Qinling belt(SQB).The plutons are compositionally similar,were emplaced at 750–711Ma,and provide insights into Neoproterozoic tectonism within the South Qinling belt.The Xiejiaba pluton contains diorite,quartz diorite,granodiorite,and granite phases,all of which are sub-alkaline and have variable major element compositions with negative correlations between SiO_(2)and MgO,TFe_(2)O_(3),Al_(2)O_(3),CaO,TiO_(2)and P_(2)O_(5).These rocks are enriched in light rare earth elements(LREEs)and large ion lithophile elements(LILEs)and have negative Nb,Ta,P and Ti anomalies,all of which are indicative of arc-type magmatism.The Fuqiangbei pluton contains granitoids that are compositionally similar to the rocks in the Xiejiaba pluton.Samples from these plutons have similarε_(Nd)(t)values(1.24–5.99)but very variable(^(87)Sr/^(86)Sr)i values(0.7010–0.7054).Combining these data with the geochemical data for these rocks suggests that the magmas that formed the Niushan complex were derived from the crust–mantle boundary.This,combined with the results of previous research,suggests that the transition from low pressure-low temperature to low pressure-high temperature conditions within a subduction zone caused melting during a period of late subduction and backarc extension.This constrain the timing of subduction within the South Qinling belt and the northern Yangtze Block(YB)to 750–711 Ma,with this Neoproterozoic subduction associated with an ocean to the north overprinting an existing continental rift-type tectonic setting within the northern margin of the Yangtze Block and the South Qinling belt.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42272246,41272221,41902235)。
文摘Orogenic peridotite is an important component of orogenic belts and retains crucial information on mantle magmatic activity,slab subduction,and melt or fluid metasomatism.To determine the source of the mantle-derived parental magma of the peridotite and to investigate the metasomatism that it experienced,we undertook an integrated study of the petrography,whole-rock major-and trace-element compositions,in situ zircon U-Pb geochronology,and mineral majorand trace-element compositions of an early Paleozoic ultramafic complex in the North Wulan area of North Qaidam.The Halihatu ultramafic-mafic complex is composed of dunite,pyroxene peridotite,and gabbro,which are characteristic of Alaskan-type complexes.The dunite yields a weighted mean^(206)Pb/^(238)U age of 479±5 Ma(MSWD=0.7),which reflects the age of the metasomatism rather than the crystallization age of the ultramafic magma.The peridotites have high Mg^(#)(89.8-91.8)and Cr contents(2419-5190 ppm),low Al_(2)O_(3)(0.20-1.68 wt%)and Ni(289-1012 ppm)contents,and high olivine Fo contents(87-91),suggesting a large degree(~15%-22%)of partial melting of lithospheric ultramafic rocks followed by variable degrees of fractional crystallization of olivine and pyroxene.This is consistent with estimates of 15%-22.3%partial melting calculated using the Cr#of spinel crystals and with the low Yb(0.04-0.33 ppm)and Y(0.72-1.29 ppm)contents of clinopyroxene crystals.Whole-rock trace-element patterns show enrichment in large ion lithophile elements and depletion in high field strength elements,along with high Al_(2)O_(3)(2.10-6.47 wt%)and low TiO_(2)(0.01-0.21 wt%)contents of clinopyroxene crystals,suggesting an arc magma cumulate trend.These features,along with the high olivine Fo contents(87-91 ppm),imply that the Halihatu peridotite is an Alaskan-type crustal cumulates derived from Mgrich hydrous basaltic melts.The high estimated f O_(2)(FMQ+1.97 to FMQ+3.81)further supports the idea that they formed in an arc setting.The Ni/Co and Ni/Mn ratios and cumulate textures of the olivine,quenched boundaries between mafic and felsic melts,and the occurrence of tremolite and phlogopite reflect interactions between the Halihatu peridotite and injected silicate and carbonatitic melts in the lower crust.Therefore,we propose a new cumulate-infiltration model for the petrogenesis of Alaskan-type ultramafic complexes,which improves our understanding of the nature of Alaskan-type continental arc root.