期刊文献+
共找到716篇文章
< 1 2 36 >
每页显示 20 50 100
Emerging rechargeable aqueous magnesium ion battery 被引量:4
1
作者 Mudi Li Yaxi Ding +6 位作者 Ying Sun Yujin Ren Jinzhang Yang Bosi Yin Hui Li Siwen Zhang Tianyi Ma 《Materials Reports(Energy)》 2022年第4期36-53,共18页
Recently,aqueous rechargeable batteries have played an essential role in developing renewable energy due to the merits of low cost,high security,and high energy density.Among various aqueous-based batteries,aqueous ma... Recently,aqueous rechargeable batteries have played an essential role in developing renewable energy due to the merits of low cost,high security,and high energy density.Among various aqueous-based batteries,aqueous magnesium ion batteries(AMIBs)have rich reserves and high theoretical specific capacity(3833 mAh cm3).However,for future industrialization,AMIBs still face many scientific issues to be solved,such as the slow diffusion of magnesium ions in the material structure,the desolvation penalty at electrode-electrolyte interfaces,the cost of water-in-salt electrolyte,the low voltage of traditional aqueous electrolyte,etc.And yet a comprehensive summary of the components of AMIBs is lacking in the research community.This review mainly introduces the exploration and development of AMIB systems and related components.We conduct an in-depth study of the cathode materials appropriate for magnesium ion batteries from their crystal structures,focusing primarily on layered structures,spinel structures,tunnel structures,and three-dimensional framework structures.We also investigate the anode materials,ranging from inorganic materials to organic materials,as well as the electrolyte materials(from the traditional electrolyte to water-in-salt electrolyte).Finally,some perspectives on ensuing optimization design for future research efforts in the AMIBs field are summarized. 展开更多
关键词 Aqueous magnesium ion batteries(AMIBs) magnesium storage mechanism Cathode materials Anode materials Electrolytes
下载PDF
The Earliest Discovery of the Role of Magnesium Ions on Stabilizing the Tertiary Structure of the Transfer RNA and Its Biological Significance —A Short Memoir 被引量:1
2
作者 Wangyi Liu 《Advances in Biological Chemistry》 2016年第5期147-151,共5页
In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradat... In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradation was discovered independently. The experiment of deaminated (denatured) tRNA obtained from native tRNA was designed and conducted and further proved the validity of this finding. It was found that magnesium ions could stabilize the tertiary structure of the natrive tRNA but could not stabilize structure of the deaminated tRNA. In term of the methodology, this stabilization technique has been widely applied in sequencing analysis of RNA and has greatly promoted the progress in the study of primary structure of RNA. More importantly, the stabilization of the tertiary structure of RNA by magnesium ions plays a key role both in the processing of messenger RNAs and the ribozyme activity. After our first article in Chinese was published in 1963, a paper of Nishimura & Novelli came into our note. The received date of their paper was March 22 of 1963, only 4 days earlier than that of our first paper. Thus, we and Nishimura & Novelli made almost at the same time the earliest discovery of the role of magnesium ions on stabilizing the tertiary structure of the transfer RNA and thus resulted in resistance of tRNA degradation by enzymes. However, this discovery was not initially appreciated for a period of time but was finally “visualized” and proved by X-ray crystal structure of yeast phenylalanine tRNA, which has provided more accurate information on the geometry of the magnesium-binding sites in tRNA. 展开更多
关键词 Deaminated tRNA Earliest Discovery Enzymatic Degradation magnesium ion Tertiary Structure Transfer RNA
下载PDF
Tribological Properties of Magnesium Ion-exchanged α-Zirconium Phosphate as a Solid Lubricant Additive in Lithium Grease 被引量:6
3
作者 ZHANG Xiaosheng XU Hong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期47-54,共8页
Magnesium ion-exchanged a-zirconium phosphates(Mg-α-ZrP) with particle sizes of 600 and 80 nm were prepared through the sealed ion-exchange and one-step hydrothermal synthesis methods, respectively. It was found that... Magnesium ion-exchanged a-zirconium phosphates(Mg-α-ZrP) with particle sizes of 600 and 80 nm were prepared through the sealed ion-exchange and one-step hydrothermal synthesis methods, respectively. It was found that larger particles of Mg-α-ZrP had a higher load-carrying capacity than that of smaller particles, whereas smaller Mg-α-ZrP particles had better anti-wear properties than that of larger Mg-α-ZrP particles under mild loads. The correlation between the particle size of the sample and the surface roughness of the friction pair thus seems to be a key factor influencing the performance. 展开更多
关键词 LAYERED α-zirconium PHOSPHATE ion-exchange TRIBOLOGICAL properties magnesium particle size
下载PDF
Wettability alteration by magnesium ion binding in heavy oil/brine/chemical/sand systems—analysis of hydration forces
4
作者 Qiang Liu Ming-Zhe Dong +1 位作者 Koorosh Asghari Yun Tu 《Natural Science》 2010年第5期450-456,共7页
In laboratory sandpack tests for heavy oil re-covery by alkaline flooding, it was found that wettability alteration of the sand had a significant impact on oil recovery. In this work, a heavy oil of 14? API was used t... In laboratory sandpack tests for heavy oil re-covery by alkaline flooding, it was found that wettability alteration of the sand had a significant impact on oil recovery. In this work, a heavy oil of 14? API was used to examine the effect of organic acids in the oil and water che- mistry on wettability alteration. From interfacial tension measurements and sand surface composition analysis, it was concluded that the water-wet sand became preferentially oil-wet by magnesium ion binding. The presence of Mg2+ in the heavy oil/Na2CO3 solution/sand system increased the oil/water interfacial tension. This confirmed the hypothesis that magnesium ion combined with the ionized organic acids to form magnesium soap at oil/water interface. Under alkaline condition, the ionized organic acids in the oil phase partition into the water phase and subsequently adsorb on the sand surfaces. The analysis of sand surface composition sugg- ested that more ionized organic acids adsorb- ed on the sand surface through magnesium ion binding. The attachment of more organic acids on the sand surface changed hydration forces, making the sand surface more oil-wet. 展开更多
关键词 WETTABILITY ALTERATion Alkaline Flooding magnesium ion Binding Interfacial Tension Organic ACIDS
下载PDF
Bio-cementation for tidal erosion resistance improvement of foreshore slopes based on microbially induced magnesium and calcium precipitation
5
作者 Xiaohao Sun Junjie Wang +3 位作者 Hengxing Wang Linchang Miao Ziming Cao Linyu Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1696-1708,共13页
In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique ... In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering. 展开更多
关键词 Bio-cementation Erosion resistance Foreshore slope stabilization magnesium ions Calcium ions
下载PDF
Highly cycle-stable VOPO_(4)-based cathodes for magnesium ion batteries:Insight into the role of interlayer engineering in batteries performance
6
作者 Jiahe Zhang Jing Shang +2 位作者 Xiaojun Zhang Ke Wang Yihe Zhang 《Nano Research》 SCIE EI CSCD 2024年第7期6127-6138,共12页
It is the sluggish ion migration kinetics that seriously affects the practical performance of the magnesium ion batteries.Even though an electrode material design using rational interlayer engineering method could eff... It is the sluggish ion migration kinetics that seriously affects the practical performance of the magnesium ion batteries.Even though an electrode material design using rational interlayer engineering method could effectively solve this issue,the optimal interlayer distance remains undetermined.Herein,various VOPO_(4)-based electrodes with expanded interlayer spacing were fabricated and the relationship between interlayer structure and battery performance was revealed.Electrochemical analysis combined with computations unveils the existence of an optimal interlayer structure,as inadequate expansion failed to fully utilization of the material performance,while excessive expansion degraded the electrode stability.Among them,the electrode with triethylene glycol(TEG)intercalation exhibited optimized performance,maintaining excellent cycling stability(191.3 mAh·g^(−1)after 800 cycles).Density functional theory(DFT)demonstrated the effectiveness and limitations to lowering the migration energy barrier by expanding the interlayer engineering.In addition,systematic mechanism research revealed the Mg^(2+)storage process:The stepwise shuttling of Mg^(2+)along the directions that lie in(001)plane triggers two pairs of redox processes,namely V^(5+)/V^(4+)and V^(4+)/V^(3+).This study,regulation of layer spacing to achieve the best integrated performance of electrodes,could deepen the understanding of interlayer engineering and guide the design of advanced multivalent-ion batteries. 展开更多
关键词 magnesium ion batteries layered electrodes interlayer engineering energy storage mechanisms high kinetics
原文传递
Intelligent microneedle patch with prolonged local release of hydrogen and magnesium ions for diabetic wound healing 被引量:4
7
作者 Pei Wang Jiayingzi Wu +8 位作者 Haiyan Yang Hengke Liu Tianyu Yao Chang Liu Yan Gong Mingsong Wang Guangyu Ji Peng Huang Xiansong Wang 《Bioactive Materials》 SCIE CSCD 2023年第6期463-476,共14页
Diabetes mellitus,an epidemic with a rapidly increasing number of patients,always leads to delayed wound healing associated with consistent pro-inflammatory M1 polarization,decreased angiogenesis and increased reactiv... Diabetes mellitus,an epidemic with a rapidly increasing number of patients,always leads to delayed wound healing associated with consistent pro-inflammatory M1 polarization,decreased angiogenesis and increased reactive oxygen species(ROS)in the microenvironment.Herein,a poly(lactic-co-glycolic acid)(PLGA)-based microneedle patch loaded with magnesium hydride(MgH_(2))(MN-MgH_(2))is manufactured for defeating diabetic wounds.The application of microneedle patch contributes to the transdermal delivery and the prolonged release of MgH_(2) that can generate hydrogen(H_(2))and magnesium ions(Mg^(2+))after reaction with body fluids.The released H_(2) reduces the production of ROS,transforming the pathological microenvironment induced by diabetes mellitus.Meanwhile,the released Mg^(2+)promotes the polarization of pro-healing M2 macrophages.Consequently,cell proliferation and migration are improved,and angiogenesis and tissue regeneration are enhanced.Such intelligent microneedle patch provides a novel way for accelerating wound healing through steadily preserving and releasing of H_(2) and Mg^(2+)locally and sustainably. 展开更多
关键词 Microneedle patch magnesium hydride HYDROGEN magnesium ion Diabetic wound healing
原文传递
Multidimensional defects tailoring local electron and Mg^(2+) diffusion channels for boosting magnesium storage performance of WO_(3)/MoO_(2)
8
作者 Shiqi Ding Yuxin Tian +8 位作者 Jiankang Chen He Lv Amin Wang Jingjie Dai Xin Dai Lei Wang Guicun Li Alan Meng Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期476-485,共10页
Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects a... Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects are constructed in WO_(3)/MoO_(2) simultaneously via competing for and sharing with O atoms during simple hydrothermal process.OD and 2D defects tailor local electron,activating more sites and generating built-in electric fields to yield ion reservoir,meanwhile,3D defect owning lower anisotropic property tailors Mg^(2+) diffusion channels to fully exploit Mg^(2+) adsorbed sites induced by OD and 2D defects,enhance the kinetics and maintain structural stability.Benefitted from synergistic effect of 0D/2D/3D structural defects,the designed WO_(3)/MoO_(2) shows the higher specific capacity(112.8 mA h g^(-1) at 50 mA g^(-1) with average attenuation rate per cycle of 0.068%),superior rate capability and excellent cycling stability(specific capacity retention of 80% after 1500 cycles at 1000 mA g^(-1)).This strategy provides design ideas of introducing multidimensional structural defects for tailoring local electron and microstructure to improve energy storage property. 展开更多
关键词 Multidimensional defects Local electron tailoring HETEROSTRUCTURE Cathode magnesium ions batteries
下载PDF
Effect of Magnesium on the C-S-H Nanostructure Evolution and Aluminate Phases Transition in Cement-Slag Blend 被引量:4
9
作者 丁庆军 YANG Jun +1 位作者 张高展 HOU Dongshuai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期108-116,共9页
The microstructural study was conducted on cement and cement-slag pastes immersed in different concentrations of Mg(NO3)2 solutions utilizing ^29Si, ^27Al NMR spectroscopy and XRD techniques. The results show that t... The microstructural study was conducted on cement and cement-slag pastes immersed in different concentrations of Mg(NO3)2 solutions utilizing ^29Si, ^27Al NMR spectroscopy and XRD techniques. The results show that the hydration of both the cement and cement-slag pastes is delayed when the pastes are cured in Mg(NO3)2 solutions as compared to the pastes cured in water. Moreover, Mg^2+ ions also exhibit an decalcifying and dealuminizing effect on the C-A-S-H in cement and cement-slag pastes, and thereby decrease Ca/Si and Al[4]/Si ratios of the C-A-S-H. The dealuminization of C-A-S-H is mitigated for cement-slag paste as compared to pure cement paste. The depolymerized calcium and aluminum ions from C-A-S-H gel mainly enter the pore solution to maintain the pH value and form Al^[6] in TAH, respectively. On the other hand, Mg^2+ ions exert an impact on the intra-transition between Al^[6] species, from AFm and hydrogarnet to hydrotalcite-like phase. NO3^-ions are interstratified in the layered Mg-Al structure and formed nitrated hydrotalcite-like phase(Mg1-xAlx(OH)2(NO3)x·nH2O). Results from both ^27Al NMR and XRD data show that ettringite seems not to react with Mg^2+ ions. 展开更多
关键词 ^29Si and ^27Al NMR magnesium ion C-A-S-H microstructure aluminate phases transition hydration slag incorporation
下载PDF
Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism 被引量:12
10
作者 Xiaojing Nie Xirao Sun +1 位作者 Chengyue Wang Jingxin Yang 《Regenerative Biomaterials》 SCIE 2020年第1期53-61,共9页
Type I collagen(Col I)is a main component of extracellular matrix(ECM).Its safety,biocompatibility,hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications.Mg2t also control a my... Type I collagen(Col I)is a main component of extracellular matrix(ECM).Its safety,biocompatibility,hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications.Mg2t also control a myriad of cellular processes,including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing.In our studies,Mg2t bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways.In order to clarify the biological behavior effect of 10mM Mg2t/Col I coating,we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT),alkaline phosphatase(ALP),406-diamidino-2-phenylindole(DAPI),Alizarin red staining and Rhodamine B-isothiocyanate(RITC)-labeled phalloidin experiments and found that 10mM Mg2t group,Col I-coating group,10mM Mg2t/Col I-coating group,respectively,promoted the proliferation and differentiation of osteoblasts,especially 10mM Mg2t/Col I-coating group.We detected the mRNA expression of osteogenic-related genes(Runx2,ALP and OCN,OPN and BMP-2)and the protein expression of signaling pathway(integrin a2,integrin b1,FAK and ERK1/2),these results indicated that 10mM Mg2t/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity.The potential mechanisms of this specific performance may be through activating via integrin a2b1-FAK-ERK1/2 protein-coupled receptor pathway. 展开更多
关键词 magnesium ion INTEGRIN Type I collagen FAK/ERK
原文传递
Flexible three-dimensional-networked iron vanadate nanosheet arrays/carbon cloths as high-performance cathodes for magnesium ion batteries 被引量:3
11
作者 Han Tang Chunli Zuo +6 位作者 Fangyu Xiong Cunyuan Pei Shuangshuang Tan Ping Luo Wei Yang Qinyou An Liqiang Mai 《Science China Materials》 SCIE EI CAS CSCD 2022年第8期2197-2206,共10页
Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materi... Owing to their safety and low cost,magnesium ion batteries(MIBs)have attracted much attention in recent years.However,the sluggish diffusion dynamics of magnesium ions hampers the search for appropriate cathode materials with excellent electrochemical performance.Herein,we design and synthesize a novel flexible three-dimensional-networked composite of iron vanadate nanosheet arrays/carbon cloths(3 D FeVO/CC)as a binder-free cathode for MIBs.Relative to bare FeVO nanosheets,the 3 D binder-free electrode with designed architecture enables a full range of electrochemical potential,including a high specific capacity of270 mA h g^(-1) and an increased life span(over 5000 cycles).Such achievable high-density energy originates from the synergistic optimization of electron and ion kinetics,while the durability benefits from the robust structure that prevents degradation in cycling.The single-phase reaction mechanism of FeVO in the magnesium ion storage process is also explored by in-situ X-ray diffraction and Raman technologies.Moreover,a flexible MIB pouch cell(3 D FeVO/CCIMgNaTi_(3)O_(7)) is assembled and exhibits practical application potential.This work verifies that 3 D FeVO/CC is a potential candidate cathode material that can satisfy the requirements of highperformance MIBs.It also opens a new avenue to improve the electrochemical performance of cathode materials for MIBs. 展开更多
关键词 iron vanadate nanosheet arrays flexibility cathode materials magnesium ion batteries
原文传递
Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide 被引量:6
12
作者 Jianwei Lin Xingxing Wang Yanhui Zhan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第2期167-187,共21页
To understand the effect of precipitation pH and coexisting Mg^(2+) on phosphate adsorption onto zirconium oxide(ZrO_2), ZrO_2 particles precipitated at pH 5.3, 7.1 and 10.5, i.e., ZrO_2(5.3), ZrO_2(7.1)and ZrO_2(10.5... To understand the effect of precipitation pH and coexisting Mg^(2+) on phosphate adsorption onto zirconium oxide(ZrO_2), ZrO_2 particles precipitated at pH 5.3, 7.1 and 10.5, i.e., ZrO_2(5.3), ZrO_2(7.1)and ZrO_2(10.5), respectively were prepared and characterized, then their adsorption performance and mechanism in the absence and presence of Mg^(2+) were comparatively investigated in this study. The results showed that the Elovich, pseudo-second-order and Langmuir isotherm models correlated with the experimental data well. The adsorption mechanism involved the complexation between phosphate and zirconium. Coexisting Mg^(2+) slightly inhibited the adsorption of phosphate on ZrO_2(5.3), including the adsorption capacity and rate, but coexisting Mg^(2+) greatly increased the adsorption capacity and rate for ZrO_2(7.1)and ZrO_2(10.5). The enhanced adsorption of phosphate on ZrO_2(7.1) and ZrO_2(10.5) in the presence of Mg^(2+) was mainly due to the formation of Mg^(2+)-HPO_4^(2-) ion pair(MgHPO_4~0) in the solution and then the adsorption of MgHPO_4~0 on the adsorbent surface, forming the phosphatebridged ternary complex Zr(OPO_3H)Mg. In the absence of Mg^(2+) , the maximum phosphate adsorption capacity at pH 7 calculated from the Langmuir isotherm model decreased in the order of ZrO 2(7.1)(67.3 mg/g) > ZrO_2(5.3)(53.6 mg/g) ≈ ZrO_2(10.5)(53.1 mg/g), but it followed the order of Zr O2(7.1)(97.0 mg/g) > ZrO_2(10.5)(79.7 mg/g) > ZrO_2(5.3)(51.3 mg/g) in the presence of Mg^(2+) . The results of this work suggest that ZrO_2(7.1) is more suitable for use as an adsorbent for the effective removal of phosphate from municipal wastewater than ZrO_2(5.3) and ZrO_2(10.5),because Mg^(2+) is generally present in this wastewater. 展开更多
关键词 HYDROUS ZIRCONIUM oxide Different PRECIPITATion PH values Adsorption PHOSPHATE magnesium ion EFFECT
原文传递
Corrosion resistance properties of AZ31 magnesium alloy after Ti ion implantation 被引量:4
13
作者 CHEN Fei ZHOU Hai +2 位作者 CAI Suo LV Fanxiu LI Chengming 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期142-146,共5页
Magnesium alloys have a wide range of applications in industry; however, their corrosion resistance, wear resistance, and hardness are rather poor, which limit their applications. Ti ion was implanted into the AZ31 ma... Magnesium alloys have a wide range of applications in industry; however, their corrosion resistance, wear resistance, and hardness are rather poor, which limit their applications. Ti ion was implanted into the AZ31 magnesium alloy surface by metal vapor vacuum arc (MEVVA) implanter. This metal arc ion source has a broad beam and high current capabilities. The implantation energy was fixed at 45 keV and the dose was at 9×10^17 cm^-2. Through ion implantation, Ti ion implantation layer with approximately 900 um in thickness was directly formed on the surface of AZ31 magnesium alloy, by which its surface property greatly improved. The chemical states of some typical elements of the ion implantation layer were analyzed by means of X-ray photoelectron spectroscopy (XPS), while the cross sectional morphology of the ion implantation layer and the phase structure were observed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The property of corrosion resistance of the Ti ion implanted layer was studied by the CS300P electrochemistry corrosion workstation in 3.5% NaCl solution. The results showed that the property of corrosion resistance was enhanced remarkably, while the corrosion velocity was obviously slowed down. 展开更多
关键词 magnesium alloy ion implantation component distribution corrosion resistance
下载PDF
Role of Chloride Ion and Dissolved Oxygen in Electrochemical Corrosion of AA5083-H321 Aluminum-Magnesium Alloy in NaCl Solutions under Flow Conditions 被引量:9
14
作者 K.Jafarzadeh T.Shahrabi +1 位作者 S.M.M.Hadavi M.G.Hosseini 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期623-628,共6页
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for... Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased. 展开更多
关键词 CORROSion FLOW NaCl solution AA5083-H321 aluminum-magnesium alloy Chloride ion OXYGEN
下载PDF
Corrosion and electrochemical behavior of AZ31D magnesium alloys in sodium chloride
15
作者 单大勇 周婉秋 +1 位作者 韩恩厚 柯伟 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1789-1792,共4页
The corrosion and electrochemical behavior of extruded AZ31D magnesium alloys in NaCl solution were investigated using SEM, XRD and electrochemical method. It is found that AZ31D is susceptive to Cl- ion, and the open... The corrosion and electrochemical behavior of extruded AZ31D magnesium alloys in NaCl solution were investigated using SEM, XRD and electrochemical method. It is found that AZ31D is susceptive to Cl- ion, and the open circuit potential shifts to more negative values with increasing chloride concentration. Pitting occurs at corrosion potential and corrosion area enlarges with enhanced polarization. Tafel slopes of the cathode branches in different testing solution are almost the same. Cl-concentration affects cathode course slightly. High frequency capacitive loops shrink with the increase of Cl- concentration. Corrosion initiates from the grain boundary and spreads to entire surface with time. 展开更多
关键词 电化学 金属腐蚀 镁合金 有色金属 X光线衍射
下载PDF
Ab Initio and DFT Study of Magnesium Sulfate Contact Ion Pairs
16
作者 张星辰 张韫宏 李前树 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期190-193,共4页
The stuctures of contact ion pairs of magnesium sulfate were studied. The geometries of contact ion pairs of MgSO 4(H 2O) n (n =1-6) were optimized by using Hartree Fock (HF/6 31+G *, HF/6 311+G ** ) and... The stuctures of contact ion pairs of magnesium sulfate were studied. The geometries of contact ion pairs of MgSO 4(H 2O) n (n =1-6) were optimized by using Hartree Fock (HF/6 31+G *, HF/6 311+G ** ) and density functional theory (DFT) (B3LYP/6 31+G *, B3LYP/6 311+G ** ) methods. The stable structures of monodentate, bidentate and tridentate contact ion pairs were obtained. The bidentate structure of contact ion pairs are the most stable compaired with the monodentate and tridentate ones for the same composition. The hydration enthalpies of contact ion pairs of MgSO 4 (H 2O) n (n =1-4) increase with their hydration numbers. 展开更多
关键词 contact ion pair magnesium sulfate aqueous solution ab initio density functional theory
下载PDF
Study on the Properties of TiN Coatings on Previously Ion-Implanted Pure Magnesium Surface by MEVVA Ion Implantation
17
作者 周海 陈飞 王建平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第6期725-727,共3页
A metal vapor vacuum arc (MEVVA) is used in ion implantation for substrate preparation before the deposition process which would ensure the improvement of mechanical properties of the coating. Ti ion is implanted in... A metal vapor vacuum arc (MEVVA) is used in ion implantation for substrate preparation before the deposition process which would ensure the improvement of mechanical properties of the coating. Ti ion is implanted into pure magnesium surface by MEVVA implanter operated with a modified cathode. Implanting energy is kept at 45 keV and dose is set at 3 ×10^17 cm^-2. TiN coatings are deposited by magnetically filtered vacuum-arc plasma source on unimplanted and previously implanted substrates. Microstructure and phase composition are analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The property of corrosion resistance of TiN coatings was studied by CS300P electrochemistry-corrosion workstation, and the main impact factor of the corrosion resistance was also analyzed. 展开更多
关键词 ion implantation TiN coating pure magnesium corrosion resistance
下载PDF
燃煤锅炉烟气湿法脱硫废水中重金属及钙镁离子沉淀规律研究 被引量:1
18
作者 王志永 崔振 +7 位作者 赵德玉 勾宝亮 刘树弟 李兰廷 寇丽红 刘敏 张显学 王亚强 《能源与环保》 2024年第3期155-161,共7页
燃煤锅炉烟气湿法脱硫废水中的重金属及钙镁等离子危害较大,开展其沉淀去除规律的研究有利于废水中有用元素的资源化回收和废水的回用。采用碱液沉淀法对脱硫废水进行分级处理,对沉淀产物采用SEM-EDS等手段进行表征。结果表明,采用氢氧... 燃煤锅炉烟气湿法脱硫废水中的重金属及钙镁等离子危害较大,开展其沉淀去除规律的研究有利于废水中有用元素的资源化回收和废水的回用。采用碱液沉淀法对脱硫废水进行分级处理,对沉淀产物采用SEM-EDS等手段进行表征。结果表明,采用氢氧化钙作为沉淀剂可以实现去除重金属、回收镁资源及去除氟化物和降低废水硬度等多种目标。在去除重金属离子的过程中,当脱硫废水pH值为9.0~9.5时,废水中的重金属离子可得到有效去除且达到污水排放标准,镁离子几乎没有损失,钙增加率也较低,仅为4.6%以下;将废水pH值调整为9.5~9.7可有效回收废水中的镁元素,镁的回收率在62%以上,回收效果较好。在碱性条件下,向废水中投加Na_(2)CO_(3)可有效降低废水中的钙离子和残留的镁离子,实现废水降硬的目标。不同pH值下沉淀物的SEM-EDS能谱显示,对脱硫废水进行梯级pH处理可以达到分级去除重金属污染物和回收镁元素的目标。通过对脱硫废水中重金属及钙镁结垢离子的沉淀规律研究,实现了废水的分质分盐有用成分的资源化回用,避免了产生杂盐危废造成二次污染的可能,达到了脱硫废水的零排放的目标。 展开更多
关键词 脱硫废水 碱液沉淀 重金属离子 钙镁离子
下载PDF
微咸水-腐植酸肥耦合滴灌条件下钙镁离子质量浓度对灌水器堵塞的影响
19
作者 贺新 刘新宇 +5 位作者 周龙 赵校 刘鹏 苏艳平 周铸 李薇 《灌溉排水学报》 CAS CSCD 2024年第3期94-102,共9页
【目的】探明腐植酸肥施用条件下不同钙镁离子质量浓度对灌水器堵塞物质形成的影响效应与作用机制。【方法】以微咸水中钙镁离子耦合腐植酸肥滴灌为研究对象,选取4种不同额定流量(1.6、1.1、1.4、1.75 L/h)的非压力补偿内镶贴片式灌水器... 【目的】探明腐植酸肥施用条件下不同钙镁离子质量浓度对灌水器堵塞物质形成的影响效应与作用机制。【方法】以微咸水中钙镁离子耦合腐植酸肥滴灌为研究对象,选取4种不同额定流量(1.6、1.1、1.4、1.75 L/h)的非压力补偿内镶贴片式灌水器(FE1—FE4),其中设置3组钙离子质量浓度微咸水处理,离子质量浓度分别为100、150、200 mg/L(G1、G2、G3),3组镁离子质量浓度微咸水处理,离子质量浓度分别为100、150、200 mg/L(M1、M2、M3),以地下微咸水灌溉为对照(CK),研究不同离子质量浓度的灌水器平均流量(Dra)、滴灌系统灌水器的堵塞率分布、灌水器堵塞物质干质量(DW)动态变化规律,并分析了灌水器内部堵塞物质矿物组分。【结果】与CK相比,G1、G2、G3、M1、M2、M3处理的Dra分别降低了21.58%~29.68%、35.02%~39.71%、45.62%~55.68%、14.25%~20.41%、24.89%~45.69%、35.22%~56.75%,堵塞物质干质量分别增加了124.62%~178.49%、174.23%~230.33%、235.59%~270.09%、67.14%~120.28%、136.96%~191.18%、203.54%~213.35%。与G1、G2、G3处理相比,质量浓度相同镁离子处理M1、M2、M3处理的堵塞物质干质量分别降低了16.41%~27.26%、4.77%~13.60%、6.82%~15.34%。【结论】钙镁离子质量浓度的增加均显著加剧了灌水器的堵塞;在相同离子质量浓度条件下,镁离子处理显著减少了灌水器内堵塞物质的总量,因此镁离子在一定程度上能够降低灌水器堵塞风险。 展开更多
关键词 微咸水 钙镁离子 灌水器堵塞 腐植酸肥
下载PDF
钛白副产硫酸亚铁中镁离子的含量分析
20
作者 赵业军 钱欣 +2 位作者 王桂兵 周朗坤 王莹莹 《化学工程师》 2024年第1期30-32,共3页
本文研究以酸性铬蓝K为指示剂,以草酸铵为沉淀剂排除Fe^(2+)干扰,用紫外分光光度法测定钛白副产物FeSO_(4)中的Mg^(2+)的含量。实验结果表明,Mg-铬蓝K的最大吸收峰波长为540nm,最佳pH值为9.5,最佳沉淀剂草酸铵的用量为10mL。经加标回收... 本文研究以酸性铬蓝K为指示剂,以草酸铵为沉淀剂排除Fe^(2+)干扰,用紫外分光光度法测定钛白副产物FeSO_(4)中的Mg^(2+)的含量。实验结果表明,Mg-铬蓝K的最大吸收峰波长为540nm,最佳pH值为9.5,最佳沉淀剂草酸铵的用量为10mL。经加标回收的方法验证了方法的可行性,测出钛白副产物FeSO_(4)中Mg^(2+)含量为1.07%。 展开更多
关键词 钛白副产物 硫酸亚铁 镁离子 含量分析 酸性铬蓝K
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部